Search results
Results from the WOW.Com Content Network
The Cauchy distribution, an example of a distribution which does not have an expected value or a variance. In physics it is usually called a Lorentzian profile, and is associated with many processes, including resonance energy distribution, impact and natural spectral line broadening and quadratic stark line broadening.
Joint and marginal distributions of a pair of discrete random variables, X and Y, dependent, thus having nonzero mutual information I(X; Y). The values of the joint distribution are in the 3×4 rectangle; the values of the marginal distributions are along the right and bottom margins.
Pivot table, in spreadsheet software, cross-tabulates sampling data with counts (contingency table) and/or sums. TPL Tables is a tool for generating and printing crosstabs. The iterative proportional fitting procedure essentially manipulates contingency tables to match altered joint distributions or marginal sums.
In this section we show that the order statistics of the uniform distribution on the unit interval have marginal distributions belonging to the beta distribution family. We also give a simple method to derive the joint distribution of any number of order statistics, and finally translate these results to arbitrary continuous distributions using ...
The characteristic function + = ((+)) of the sum of two independent random variables X and Y is just the product of the two separate characteristic functions: = (), = ()
The conditional distribution contrasts with the marginal distribution of a random variable, which is its distribution without reference to the value of the other variable. If the conditional distribution of Y {\displaystyle Y} given X {\displaystyle X} is a continuous distribution , then its probability density function is known as the ...
A more general definition of conditional mutual information, applicable to random variables with continuous or other arbitrary distributions, will depend on the concept of regular conditional probability.
In probability theory and statistics, a copula is a multivariate cumulative distribution function for which the marginal probability distribution of each variable is uniform on the interval [0, 1]. Copulas are used to describe/model the dependence (inter-correlation) between random variables . [ 1 ]