enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pearson correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Pearson_correlation...

    Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.

  3. Correlation - Wikipedia

    en.wikipedia.org/wiki/Correlation

    In statistics, correlation or dependence is any statistical relationship, whether causal or not, between two random variables or bivariate data. Although in the broadest sense, "correlation" may indicate any type of association, in statistics it usually refers to the degree to which a pair of variables are linearly related.

  4. Correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Correlation_coefficient

    A correlation coefficient is a numerical measure of some type of linear correlation, meaning a statistical relationship between two variables. [a] The variables may be two columns of a given data set of observations, often called a sample, or two components of a multivariate random variable with a known distribution. [citation needed]

  5. Spearman's rank correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Spearman's_rank_correlation...

    In statistics, Spearman's rank correlation coefficient or Spearman's ρ, named after Charles Spearman [1] and often denoted by the Greek letter (rho) or as , is a nonparametric measure of rank correlation (statistical dependence between the rankings of two variables).

  6. Phi coefficient - Wikipedia

    en.wikipedia.org/wiki/Phi_coefficient

    In statistics, the phi coefficient (or mean square contingency coefficient and denoted by φ or r φ) is a measure of association for two binary variables.. In machine learning, it is known as the Matthews correlation coefficient (MCC) and used as a measure of the quality of binary (two-class) classifications, introduced by biochemist Brian W. Matthews in 1975.

  7. Correlation ratio - Wikipedia

    en.wikipedia.org/wiki/Correlation_ratio

    The correlation ratio was introduced by Karl Pearson as part of analysis of variance. Ronald Fisher commented: "As a descriptive statistic the utility of the correlation ratio is extremely limited. It will be noticed that the number of degrees of freedom in the numerator of depends on the number of the arrays" [1]

  8. Covariance and correlation - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_correlation

    With any number of random variables in excess of 1, the variables can be stacked into a random vector whose i th element is the i th random variable. Then the variances and covariances can be placed in a covariance matrix, in which the (i, j) element is the covariance between the i th random variable and the j th one.

  9. Life-time of correlation - Wikipedia

    en.wikipedia.org/wiki/Life-time_of_correlation

    The correlation coefficient ρ, expressed as an autocorrelation function or cross-correlation function, depends on the lag-time between the times being considered.Typically such functions, ρ(t), decay to zero with increasing lag-time, but they can assume values across all levels of correlations: strong and weak, and positive and negative as in the table.