Search results
Results from the WOW.Com Content Network
In mathematics, and, in particular, in graph theory, a rooted graph is a graph in which one vertex has been distinguished as the root. [1] [2] Both directed and undirected versions of rooted graphs have been studied, and there are also variant definitions that allow multiple roots. Examples of rooted graphs with some variants.
A path graph (or linear graph) consists of n vertices arranged in a line, so that vertices i and i + 1 are connected by an edge for i = 1, …, n – 1. A starlike tree consists of a central vertex called root and several path graphs attached to it. More formally, a tree is starlike if it has exactly one vertex of degree greater than 2.
A rooted tree with the "away from root" direction (a more narrow term is an "arborescence"), meaning: A directed graph, whose underlying undirected graph is a tree (any two vertices are connected by exactly one simple path), [6] with a distinguished root (one vertex is designated as the root),
A graph is d-regular when all of its vertices have degree d. A regular graph is a graph that is d-regular for some d. regular tournament A regular tournament is a tournament where in-degree equals out-degree for all vertices. reverse See transpose. root 1. A designated vertex in a graph, particularly in directed trees and rooted graphs. 2.
The edges of a graph define a symmetric relation on the vertices, called the adjacency relation. Specifically, two vertices x and y are adjacent if {x, y} is an edge. A graph is fully determined by its adjacency matrix A, which is an n × n square matrix, with A ij specifying the number of connections from vertex i to vertex j.
The rooted product of graphs. In mathematical graph theory, the rooted product of a graph G and a rooted graph H is defined as follows: take | V(G) | copies of H, and for every vertex v i of G, identify v i with the root node of the i-th copy of H. More formally, assuming that
A recursive definition using set theory is that a binary tree is a tuple (L, S, R), where L and R are binary trees or the empty set and S is a singleton set containing the root. [ 1 ] [ 2 ] From a graph theory perspective, binary trees as defined here are arborescences . [ 3 ]
In computer science, a graph is an abstract data type that is meant to implement the undirected graph and directed graph concepts from the field of graph theory within mathematics. A graph data structure consists of a finite (and possibly mutable) set of vertices (also called nodes or points ), together with a set of unordered pairs of these ...