Search results
Results from the WOW.Com Content Network
e. In biochemistry and nutrition, a polyunsaturated fat is a fat that contains a polyunsaturated fatty acid (abbreviated PUFA), which is a subclass of fatty acid characterized by a backbone with two or more carbon–carbon double bonds. [1][2] Some polyunsaturated fatty acids are essentials. Polyunsaturated fatty acids are precursors to and are ...
An omega−3 fatty acid is a fatty acid with multiple double bonds, where the first double bond is between the third and fourth carbon atoms from the end of the carbon atom chain. "Short-chain" omega−3 fatty acids have a chain of 18 carbon atoms or less, while "long-chain" omega−3 fatty acids have a chain of 20 or more.
Fish oil is oil derived from the tissues of oily fish. Fish oils contain the omega−3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), precursors of certain eicosanoids that are known to reduce inflammation in the body and improve hypertriglyceridemia. [1][2] There has been a great deal of controversy in the 21st century ...
What is fish oil? Fish oil is derived from fatty fish and is a source of omega-3 fatty acids. "The fish oil found in supplements are extracted from the tissues of oily fish, and put into capsule ...
Sardines ("pilchards") are a nutrient-rich, small, oily fish widely consumed by humans and as forage fish by larger fish species, seabirds and marine mammals. Sardines are a source of omega-3 fatty acids. Sardines are often served in cans, but can also be eaten grilled, pickled, or smoked when fresh. The term sardine was first used in English ...
In chemical structure, EPA is a carboxylic acid with a 20- carbon chain and five cis double bonds; the first double bond is located at the third carbon from the omega end. EPA is a polyunsaturated fatty acid (PUFA) that acts as a precursor for prostaglandin-3 (which inhibits platelet aggregation), thromboxane-3, and leukotriene-5 eicosanoids.
Mammals are unable to synthesize omega−3 fatty acids, but can obtain the shorter-chain omega−3 fatty acid ALA (18 carbons and 3 double bonds) through diet and use it to form the more important long-chain omega−3 fatty acids, EPA (20 carbons and 5 double bonds) and then from EPA, the most crucial, DHA (22 carbons and 6 double bonds). [2]
Cervonic acid (or docosahexaenoic acid) has 22 carbons, is found in fish oil, is a 4,7,10,13,16,19-hexa unsaturated fatty acid. In the human body its generation depends on consumption of omega 3 essential fatty acids (e.g., ALA or EPA), but the conversion process is inefficient. [22]