enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orbit equation - Wikipedia

    en.wikipedia.org/wiki/Orbit_equation

    In astrodynamics, an orbit equation defines the path of orbiting body around central body relative to , without specifying position as a function of time.Under standard assumptions, a body moving under the influence of a force, directed to a central body, with a magnitude inversely proportional to the square of the distance (such as gravity), has an orbit that is a conic section (i.e. circular ...

  3. Orbital period - Wikipedia

    en.wikipedia.org/wiki/Orbital_period

    The orbital period (also revolution period) is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy , it usually applies to planets or asteroids orbiting the Sun , moons orbiting planets, exoplanets orbiting other stars , or binary stars .

  4. Circular orbit - Wikipedia

    en.wikipedia.org/wiki/Circular_orbit

    is the orbital velocity of the orbiting body, is radius of the circle is angular speed, measured in radians per unit time. The formula is dimensionless, describing a ratio true for all units of measure applied uniformly across the formula.

  5. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    Orbital mechanics or astrodynamics is the application of ballistics ... The orbital period is equal to that for a circular orbit with the orbit radius equal to the ...

  6. Orbital eccentricity - Wikipedia

    en.wikipedia.org/wiki/Orbital_eccentricity

    For Earth, orbital eccentricity e ≈ 0.016 71, apoapsis is aphelion and periapsis is perihelion, relative to the Sun. For Earth's annual orbit path, the ratio of longest radius (r a) / shortest radius (r p) is = +

  7. True anomaly - Wikipedia

    en.wikipedia.org/wiki/True_anomaly

    In celestial mechanics, true anomaly is an angular parameter that defines the position of a body moving along a Keplerian orbit.It is the angle between the direction of periapsis and the current position of the body, as seen from the main focus of the ellipse (the point around which the object orbits).

  8. Synchronous orbit - Wikipedia

    en.wikipedia.org/wiki/Synchronous_orbit

    = Radius of orbit. By this formula one can find the stationary orbit of an object in relation to a given body. Orbital speed (how fast a satellite is moving through space) is calculated by multiplying the angular speed of the satellite by the orbital radius. [3]

  9. Bohr radius - Wikipedia

    en.wikipedia.org/wiki/Bohr_radius

    The Bohr radius (⁠ ⁠) is a physical constant, approximately equal to the most probable distance between the nucleus and the electron in a hydrogen atom in its ground state. It is named after Niels Bohr , due to its role in the Bohr model of an atom.