Search results
Results from the WOW.Com Content Network
The problem now lies in finding the Green's function G that satisfies equation 1. For this reason, the Green's function is also sometimes called the fundamental solution associated to the operator L. Not every operator admits a Green's function. A Green's function can also be thought of as a right inverse of L.
In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D (surface in ) bounded by C. It is the two-dimensional special case of Stokes' theorem (surface in ). In one dimension, it is equivalent to the fundamental theorem of calculus.
It is in this essay that the term 'potential function' first occurs. Herein also his remarkable theorem in pure mathematics, since universally known as Green's theorem, and probably the most important instrument of investigation in the whole range of mathematical physics, made its appearance. We are all now able to understand, in a general way ...
This file contains additional information, probably added from the digital camera or scanner used to create or digitize it. If the file has been modified from its original state, some details may not fully reflect the modified file.
There is an associated Green formula representing suitably smooth functions in terms of the Green measure and first exit times of the diffusion. The concepts are named after the British mathematician George Green and are generalizations of the classical Green's function and Green formula to the stochastic case using Dynkin's formula .
In mathematics, Green formula may refer to: Green's theorem in integral calculus; Green's identities in vector calculus; Green's function in differential equations; the Green formula for the Green measure in stochastic analysis
In many-body theory, the term Green's function (or Green function) is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators. The name comes from the Green's functions used to solve inhomogeneous differential equations, to which they are loosely ...
The theorem of de Rham shows that this map is actually an isomorphism, a far-reaching generalization of the Poincaré lemma. As suggested by the generalized Stokes' theorem, the exterior derivative is the "dual" of the boundary map on singular simplices.