enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    where F is the gravitational force acting between two objects, m 1 and m 2 are the masses of the objects, r is the distance between the centers of their masses, and G is the gravitational constant. The first test of Newton's law of gravitation between masses in the laboratory was the Cavendish experiment conducted by the British scientist Henry ...

  3. List of equations in gravitation - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    A common misconception occurs between centre of mass and centre of gravity.They are defined in similar ways but are not exactly the same quantity. Centre of mass is the mathematical description of placing all the mass in the region considered to one position, centre of gravity is a real physical quantity, the point of a body where the gravitational force acts.

  4. Three-body problem - Wikipedia

    en.wikipedia.org/wiki/Three-body_problem

    The circular restricted three-body problem [clarification needed] is a valid approximation of elliptical orbits found in the Solar System, [citation needed] and this can be visualized as a combination of the potentials due to the gravity of the two primary bodies along with the centrifugal effect from their rotation (Coriolis effects are ...

  5. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth’s gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth’s gravitational field of strength g.

  6. Gravitational field - Wikipedia

    en.wikipedia.org/wiki/Gravitational_field

    A gravitational field is used to explain gravitational phenomena, such as the gravitational force field exerted on another massive body. It has dimension of acceleration (L/T 2) and it is measured in units of newtons per kilogram (N/kg) or, equivalently, in meters per second squared (m/s 2). In its original concept, gravity was a force between ...

  7. g-force - Wikipedia

    en.wikipedia.org/wiki/G-force

    One g is the force per unit mass due to gravity at the Earth's surface and is the standard gravity (symbol: g n), defined as 9.806 65 metres per second squared, [5] or equivalently 9.806 65 newtons of force per kilogram of mass. The unit definition does not vary with location—the g-force when standing on the Moon is almost exactly 1 ⁄ 6 that

  8. Force field (physics) - Wikipedia

    en.wikipedia.org/wiki/Force_field_(physics)

    In physics, a force field is a vector field corresponding with a non-contact force acting on a particle at various positions in space. Specifically, a force field is a vector field F {\displaystyle \mathbf {F} } , where F ( r ) {\displaystyle \mathbf {F} (\mathbf {r} )} is the force that a particle would feel if it were at the position r ...

  9. Gravitational energy - Wikipedia

    en.wikipedia.org/wiki/Gravitational_energy

    For two pairwise interacting point particles, the gravitational potential energy is the work done by the gravitational force in bringing the masses together: = =, where is the displacement vector between the two particles and denotes the scalar product. Since the gravitational force is always parallel to the axis joining the particles, this ...