Search results
Results from the WOW.Com Content Network
The following are also concurrent: (1) the circle that is centered at the hyperbola's center and that passes through the hyperbola's vertices; (2) either directrix; and (3) either of the asymptotes. [22] Since both the transverse axis and the conjugate axis are axes of symmetry, the symmetry group of a hyperbola is the Klein four-group.
The nine-point center is indexed as X(5), the Feuerbach point, as X(11), the center of the Kiepert hyperbola as X(115), and the center of the JeÅ™ábek hyperbola as X(125). History about the nine-point circle based on J.S. MacKay's article from 1892: History of the Nine Point Circle; Weisstein, Eric W. "Nine-Point Circle". MathWorld.
Nine-point hyperbola. The right branch bisects BA , BC , BP ; the left bisects PA , PC , AC , and passes through the intersections of lines BC, PA and AB, PC . In Euclidean geometry with triangle ABC , the nine-point hyperbola is an instance of the nine-point conic described by American mathematician Maxime Bôcher in 1892.
Feuerbach Hyperbola. In geometry, the Feuerbach hyperbola is a rectangular hyperbola passing through important triangle centers such as the Orthocenter, Gergonne point, Nagel point and Schiffler point. The center of the hyperbola is the Feuerbach point, the point of tangency of the incircle and the nine-point circle. [1]
The semi-minor axis (minor semiaxis) of an ellipse or hyperbola is a line segment that is at right angles with the semi-major axis and has one end at the center of the conic section. For the special case of a circle, the lengths of the semi-axes are both equal to the radius of the circle.
The center of the Kiepert hyperbola lies on the nine-point circle. The center is the midpoint of the line segment joining the isogonic centers of triangle A B C {\displaystyle ABC} which are the triangle centers X(13) and X(14) in the Encyclopedia of Triangle Centers.
The linear eccentricity of an ellipse or hyperbola, denoted c (or sometimes f or e), is the distance between its center and either of its two foci. The eccentricity can be defined as the ratio of the linear eccentricity to the semimajor axis a : that is, e = c a {\displaystyle e={\frac {c}{a}}} (lacking a center, the linear eccentricity for ...
A hyperbolic sector is a region of the Cartesian plane bounded by a hyperbola and two rays from the origin to it. For example, the two points (a, 1/a) and (b, 1/b) on the rectangular hyperbola xy = 1, or the corresponding region when this hyperbola is re-scaled and its orientation is altered by a rotation leaving the center at the origin, as with the unit hyperbola.