Search results
Results from the WOW.Com Content Network
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
Ternary: The base-three numeral system with 0, 1, and 2 as digits. Quaternary : The base-four numeral system with 0, 1, 2, and 3 as digits. Hexadecimal : Base 16, widely used by computer system designers and programmers, as it provides a more human-friendly representation of binary-coded values.
1, 2, 3, 211, 5, 23, 7, 3331113965338635107, 311, 773, ... For n ≥ 2, a(n) is the prime that is finally reached when you start with n, concatenate its prime factors ...
Having acquired some familiar number bonds, children should also soon learn how to use them to develop strategies to complete more complicated sums, for example by navigating from a new sum to an adjacent number bond they know, i.e. 5 + 2 and 4 + 3 are both number bonds that make 7; or by strategies like "making ten", for example recognising ...
where f (2k−1) is the (2k − 1)th derivative of f and B 2k is the (2k)th Bernoulli number: B 2 = 1 / 6 , B 4 = − + 1 / 30 , and so on. Setting f ( x ) = x , the first derivative of f is 1, and every other term vanishes, so [ 15 ]
For instance, the first counterexample must be odd because f(2n) = n, smaller than 2n; and it must be 3 mod 4 because f 2 (4n + 1) = 3n + 1, smaller than 4n + 1. For each starting value a which is not a counterexample to the Collatz conjecture, there is a k for which such an inequality holds, so checking the Collatz conjecture for one starting ...
Lucas numbers have L 1 = 1, L 2 = 3, and L n = L n−1 + L n−2. Primefree sequences use the Fibonacci recursion with other starting points to generate sequences in which all numbers are composite. Letting a number be a linear function (other than the sum) of the 2 preceding numbers. The Pell numbers have P n = 2P n−1 + P n−2.
For example, with S = {1,2,3,4}, the permutations with the restriction that the element 1 can not be in positions 1 or 3, and the element 2 can not be in position 4 are: 2134, 2143, 3124, 4123, 2341, 2431, 3241, 3421, 4231 and 4321.