enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Schumann resonances - Wikipedia

    en.wikipedia.org/wiki/Schumann_resonances

    The global electromagnetic resonance phenomenon is named after physicist Winfried Otto Schumann who predicted it mathematically in 1952. Schumann resonances are the principal background in the part of the electromagnetic spectrum [2] from 3 Hz through 60 Hz [3] and appear as distinct peaks at extremely low frequencies around 7.83 Hz (fundamental), 14.3, 20.8, 27.3, and 33.8 Hz.

  3. Triple-alpha process - Wikipedia

    en.wikipedia.org/wiki/Triple-alpha_process

    It was instead astrophysicist Fred Hoyle who, in 1953, used the abundance of carbon-12 in the universe as evidence for the existence of a carbon-12 resonance. The only way Hoyle could find that would produce an abundance of both carbon and oxygen was through a triple-alpha process with a carbon-12 resonance near 7.68 MeV, which would also ...

  4. Molecular vibration - Wikipedia

    en.wikipedia.org/wiki/Molecular_vibration

    A molecular vibration is a periodic motion of the atoms of a molecule relative to each other, such that the center of mass of the molecule remains unchanged. The typical vibrational frequencies range from less than 10 13 Hz to approximately 10 14 Hz, corresponding to wavenumbers of approximately 300 to 3000 cm −1 and wavelengths of approximately 30 to 3 μm.

  5. Doublet state - Wikipedia

    en.wikipedia.org/wiki/Doublet_state

    Examples of atoms in singlet, doublet, and triplet states. In quantum mechanics, a doublet is a composite quantum state of a system with an effective spin of 1/2, such that there are two allowed values of the spin component, −1/2 and +1/2. Quantum systems with two possible states are sometimes called two-level systems.

  6. Hyperfine structure - Wikipedia

    en.wikipedia.org/wiki/Hyperfine_structure

    One second is now defined to be exactly 9 192 631 770 cycles of the hyperfine structure transition frequency of caesium-133 atoms. On October 21, 1983, the 17th CGPM defined the meter as the length of the path travelled by light in a vacuum during a time interval of ⁠ 1 / 299,792,458 ⁠ of a second .

  7. Resonance (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Resonance_(chemistry)

    The resonance proposal also helped explain the number of isomers of benzene derivatives. For example, Kekulé's structure would predict four dibromobenzene isomers, including two ortho isomers with the brominated carbon atoms joined by either a single or a double bond. In reality there are only three dibromobenzene isomers and only one is ortho ...

  8. Hydrogen spectral series - Wikipedia

    en.wikipedia.org/wiki/Hydrogen_spectral_series

    The spectral series of hydrogen, on a logarithmic scale. The emission spectrum of atomic hydrogen has been divided into a number of spectral series, with wavelengths given by the Rydberg formula. These observed spectral lines are due to the electron making transitions between two energy levels in an atom.

  9. Carbon-13 nuclear magnetic resonance - Wikipedia

    en.wikipedia.org/wiki/Carbon-13_nuclear_magnetic...

    Both the atoms, carbon and hydrogen exhibit spins and are NMR active. The nuclear Overhauser Effect is in general, showing up when one of two different types of atoms is irradiated while the NMR spectrum of the other type is determined. If the absorption intensities of the observed (i.e., non-irradiated) atom change, enhancement occurs.

  1. Related searches schumann resonance signals are produced by two atoms of carbon and one hydrogen

    schumann resonances diagramschumann resonance effects
    schumann resonance wikipediaschumann lightning system
    schumann resonance physics