Search results
Results from the WOW.Com Content Network
A 2D orthogonal projection of a 5-cube. A five-dimensional space is a space with five dimensions. In mathematics, a sequence of N numbers can represent a location in an N -dimensional space. If interpreted physically, that is one more than the usual three spatial dimensions and the fourth dimension of time used in relativistic physics.
Mathematically, a four-dimensional space is a space that needs four parameters to specify a point in it. For example, a general point might have position vector a, equal to. This can be written in terms of the four standard basis vectors (e1, e2, e3, e4), given by. so the general vector a is. Vectors add, subtract and scale as in three ...
In affine geometry, uniform scaling (or isotropic scaling[1]) is a linear transformation that enlarges (increases) or shrinks (diminishes) objects by a scale factor that is the same in all directions (isotropically). The result of uniform scaling is similar (in the geometric sense) to the original. A scale factor of 1 is normally allowed, so ...
Coordinate system. The spherical coordinate system is commonly used in physics. It assigns three numbers (known as coordinates) to every point in Euclidean space: radial distance r, polar angle θ (theta), and azimuthal angle φ (phi). The symbol ρ (rho) is often used instead of r.
v. t. e. Geometry (from Ancient Greek γεωμετρία (geōmetría) 'land measurement'; from γῆ (gê) 'earth, land' and μέτρον (métron) 'a measure') [1] is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. [2] Geometry is, along with arithmetic, one of ...
Spatial scale. Spatial scale is a specific application of the term scale for describing or categorizing (e.g. into orders of magnitude) the size of a space (hence spatial), or the extent of it at which a phenomenon or process occurs. [1][2] For instance, in physics an object or phenomenon can be called microscopic if too small to be visible.
Descriptive geometry is the branch of geometry which allows the representation of three-dimensional objects in two dimensions by using a specific set of procedures. The resulting techniques are important for engineering, architecture, design and in art. [1] The theoretical basis for descriptive geometry is provided by planar geometric projections.
The scale ratio of a model represents the proportional ratio of a linear dimension of the model to the same feature of the original. Examples include a 3-dimensional scale model of a building or the scale drawings of the elevations or plans of a building. [1] In such cases the scale is dimensionless and exact throughout the model or drawing.