Search results
Results from the WOW.Com Content Network
In statistics, a weighted median of a sample is the 50% weighted percentile. [1][2][3] It was first proposed by F. Y. Edgeworth in 1888. [4][5] Like the median, it is useful as an estimator of central tendency, robust against outliers. It allows for non-uniform statistical weights related to, e.g., varying precision measurements in the sample.
The weighted arithmetic mean is similar to an ordinary arithmetic mean (the most common type of average), except that instead of each of the data points contributing equally to the final average, some data points contribute more than others. The notion of weighted mean plays a role in descriptive statistics and also occurs in a more general ...
The median of the 32-element set L' is the average of the 16th smallest element, 4, and 17th smallest element, 8, so the N50 is 6. We can see that the sum of all values in the list L that are smaller than or equal to the N50 of 6 is 16 = 2+2+2+3+3+4 and the sum of all values in the list L that are larger than or equal to 6 is also 16 = 8+8.
Median. Calculating the median in data sets of odd (above) and even (below) observations. The median of a set of numbers is the value separating the higher half from the lower half of a data sample, a population, or a probability distribution. For a data set, it may be thought of as the “middle" value. The basic feature of the median in ...
Percentile. Statistic which divides a data set into 100 parts and analyzes it as a percentage. In statistics, a k-th percentile, also known as percentile score or centile, is a score below which a given percentage k of scores in its frequency distribution falls (" exclusive " definition) or a score at or below which a given percentage falls ...
In mathematics, the harmonic mean is a kind of average, one of the Pythagorean means. It is the most appropriate average for ratios and rates such as speeds, [1][2] and is normally only used for positive arguments. [3] The harmonic mean is the reciprocal of the arithmetic mean of the reciprocals of the numbers, that is, the generalized f-mean ...
The median absolute deviation is a measure of statistical dispersion. Moreover, the MAD is a robust statistic, being more resilient to outliers in a data set than the standard deviation. In the standard deviation, the distances from the mean are squared, so large deviations are weighted more heavily, and thus outliers can heavily influence it.
It is a measure used to evaluate the performance of regression or forecasting models. It is a variant of MAPE in which the mean absolute percent errors is treated as a weighted arithmetic mean. Most commonly the absolute percent errors are weighted by the actuals (e.g. in case of sales forecasting, errors are weighted by sales volume). [3]