Search results
Results from the WOW.Com Content Network
kinetic energy of the product particles (fraction of the kinetic energy of the charged nuclear reaction products can be directly converted into electrostatic energy); [5] emission of very high energy photons, called gamma rays; some energy may remain in the nucleus, as a metastable energy level.
A fission nuclear power plant is generally composed of: a nuclear reactor, in which the nuclear reactions generating heat take place; a cooling system, which removes the heat from inside the reactor; a steam turbine, which transforms the heat into mechanical energy; an electric generator, which transforms the mechanical energy into electrical ...
Nuclear binding energy, the energy required to split a nucleus of an atom. Nuclear potential energy, the potential energy of the particles inside an atomic nucleus. Nuclear reaction, a process in which nuclei or nuclear particles interact, resulting in products different from the initial ones; see also nuclear fission and nuclear fusion.
Decay heat as fraction of full power for a reactor SCRAMed from full power at time 0, using two different correlations. In a typical nuclear fission reaction, 187 MeV of energy are released instantaneously in the form of kinetic energy from the fission products, kinetic energy from the fission neutrons, instantaneous gamma rays, or gamma rays from the capture of neutrons. [7]
Nuclear power is a type of nuclear technology involving the controlled use of nuclear fission to release energy for work including propulsion, heat, and the generation of electricity. Nuclear energy is produced by a controlled nuclear chain reaction which creates heat—and which is used to boil water, produce steam, and drive a steam turbine.
Nuclear engineering is the engineering discipline concerned with designing and applying systems that utilize the energy released by nuclear processes. [ 1 ] [ 2 ] The most prominent application of nuclear engineering is the generation of electricity.
Nuclear weapons employ high quality, highly enriched fuel exceeding the critical size and geometry (critical mass) necessary in order to obtain an explosive chain reaction. The fuel for energy purposes, such as in a nuclear fission reactor, is very different, usually consisting of a low-enriched oxide material (e.g. uranium dioxide, UO 2 ...
Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter.. Nuclear physics should not be confused with atomic physics, which studies the atom as a whole, including its electrons.