enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Binary heap - Wikipedia

    en.wikipedia.org/wiki/Binary_heap

    The decrease key operation replaces the value of a node with a given value with a lower value, and the increase key operation does the same but with a higher value. This involves finding the node with the given value, changing the value, and then down-heapifying or up-heapifying to restore the heap property. Decrease key can be done as follows:

  3. Heap (data structure) - Wikipedia

    en.wikipedia.org/wiki/Heap_(data_structure)

    Example of a binary max-heap with node keys being integers between 1 and 100. In computer science, a heap is a tree-based data structure that satisfies the heap property: In a max heap, for any given node C, if P is the parent node of C, then the key (the value) of P is greater than or equal to the key of C.

  4. Best, worst and average case - Wikipedia

    en.wikipedia.org/wiki/Best,_worst_and_average_case

    Heapsort has O(n) time when all elements are the same. Heapify takes O(n) time and then removing elements from the heap is O(1) time for each of the n elements. The run time grows to O(nlog(n)) if all elements must be distinct. Bogosort has O(n) time when the elements are sorted on the first iteration. In each iteration all elements are checked ...

  5. Heapsort - Wikipedia

    en.wikipedia.org/wiki/Heapsort

    The heapsort algorithm can be divided into two phases: heap construction, and heap extraction. The heap is an implicit data structure which takes no space beyond the array of objects to be sorted; the array is interpreted as a complete binary tree where each array element is a node and each node's parent and child links are defined by simple arithmetic on the array indexes.

  6. Fibonacci heap - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_heap

    A Fibonacci heap is a collection of trees satisfying the minimum-heap property, that is, the key of a child is always greater than or equal to the key of the parent. This implies that the minimum key is always at the root of one of the trees. Compared with binomial heaps, the structure of a Fibonacci heap is more flexible.

  7. Min-max heap - Wikipedia

    en.wikipedia.org/wiki/Min-max_heap

    Each node in a min-max heap has a data member (usually called key) whose value is used to determine the order of the node in the min-max heap. The root element is the smallest element in the min-max heap. One of the two elements in the second level, which is a max (or odd) level, is the greatest element in the min-max heap

  8. AOL Mail

    mail.aol.com/?rp=webmail-std/en-us/basic

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Talk:Heap (data structure) - Wikipedia

    en.wikipedia.org/wiki/Talk:Heap_(data_structure)

    In computer science, a heap is a specialized tree-based data structure that satisfies the following heap property: for all nodes C and P, if P is a parent of C, then the key (the value) of P is either greater than or equal to (max heap) or less than or equal to (mind heap) the key of C.