enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    The definitions for monopoles are of theoretical interest, although real magnetic dipoles can be described using pole strengths. There are two possible units for monopole strength, Wb (Weber) and A m (Ampere metre). Dimensional analysis shows that magnetic charges relate by q m (Wb) = μ 0 q m (Am).

  3. Radiant intensity - Wikipedia

    en.wikipedia.org/wiki/Radiant_intensity

    Radiant intensity is used to characterize the emission of radiation by an antenna: [2], = (), where E e is the irradiance of the antenna;; r is the distance from the antenna.; Unlike power density, radiant intensity does not depend on distance: because radiant intensity is defined as the power through a solid angle, the decreasing power density over distance due to the inverse-square law is ...

  4. Spectral power distribution - Wikipedia

    en.wikipedia.org/wiki/Spectral_power_distribution

    Mathematically, for the spectral power distribution of a radiant exitance or irradiance one may write: =where M(λ) is the spectral irradiance (or exitance) of the light (SI units: W/m 2 = kg·m −1 ·s −3); Φ is the radiant flux of the source (SI unit: watt, W); A is the area over which the radiant flux is integrated (SI unit: square meter, m 2); and λ is the wavelength (SI unit: meter, m).

  5. Oscillator strength - Wikipedia

    en.wikipedia.org/wiki/Oscillator_strength

    In spectroscopy, oscillator strength is a dimensionless quantity that expresses the probability of absorption or emission of electromagnetic radiation in transitions between energy levels of an atom or molecule. [1] [2] For example, if an emissive state has a small oscillator strength, nonradiative decay will outpace radiative decay.

  6. Spectral flux density - Wikipedia

    en.wikipedia.org/wiki/Spectral_flux_density

    In this case, [1] spectral flux density is the quantity that describes the rate at which energy transferred by electromagnetic radiation is received from that unresolved point source, per unit receiving area facing the source, per unit wavelength range. At any given wavelength λ, the spectral flux density, F λ, can be determined by the ...

  7. Electromagnetic wave equation - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_wave_equation

    The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum.It is a three-dimensional form of the wave equation.

  8. Equivalent width - Wikipedia

    en.wikipedia.org/wiki/Equivalent_width

    The photons will be shifted away from the line center, thus rendering the height of the emission line a poor measure of its overall strength. The equivalent width, on the other hand, "measures the fraction of energy removed from the spectrum by the line," regardless of the broadening intrinsic to the line or a detector with poor resolution. [3]

  9. Intensity (physics) - Wikipedia

    en.wikipedia.org/wiki/Intensity_(physics)

    For a monochromatic propagating electromagnetic wave, such as a plane wave or a Gaussian beam, if E is the complex amplitude of the electric field, then the time-averaged energy density of the wave, travelling in a non-magnetic material, is given by: = | |, and the local intensity is obtained by multiplying this expression by the wave velocity