enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. EM algorithm and GMM model - Wikipedia

    en.wikipedia.org/wiki/EM_Algorithm_And_GMM_Model

    The EM algorithm consists of two steps: the E-step and the M-step. Firstly, the model parameters and the () can be randomly initialized. In the E-step, the algorithm tries to guess the value of () based on the parameters, while in the M-step, the algorithm updates the value of the model parameters based on the guess of () of the E-step.

  3. Mixture model - Wikipedia

    en.wikipedia.org/wiki/Mixture_model

    A typical finite-dimensional mixture model is a hierarchical model consisting of the following components: . N random variables that are observed, each distributed according to a mixture of K components, with the components belonging to the same parametric family of distributions (e.g., all normal, all Zipfian, etc.) but with different parameters

  4. Expectation–maximization algorithm - Wikipedia

    en.wikipedia.org/wiki/Expectation–maximization...

    A well-written short book on EM, including detailed derivation of EM for GMMs, HMMs, and Dirichlet. Bilmes, Jeff (1997). A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models (Technical Report TR-97-021).

  5. Mixture distribution - Wikipedia

    en.wikipedia.org/wiki/Mixture_distribution

    Density of a mixture of three normal distributions (μ = 5, 10, 15, σ = 2) with equal weights.Each component is shown as a weighted density (each integrating to 1/3) Given a finite set of probability density functions p 1 (x), ..., p n (x), or corresponding cumulative distribution functions P 1 (x),..., P n (x) and weights w 1, ..., w n such that w i ≥ 0 and ∑w i = 1, the mixture ...

  6. Mixture of experts - Wikipedia

    en.wikipedia.org/wiki/Mixture_of_experts

    The mixture of experts, being similar to the gaussian mixture model, can also be trained by the expectation-maximization algorithm, just like gaussian mixture models. Specifically, during the expectation step, the "burden" for explaining each data point is assigned over the experts, and during the maximization step, the experts are trained to ...

  7. Gaussian mixture model - Wikipedia

    en.wikipedia.org/?title=Gaussian_mixture_model&...

    Gaussian mixture model. Add languages. Add links. Article; Talk; ... the free encyclopedia. ... Text is available under the Creative Commons Attribution-ShareAlike 4. ...

  8. Gaussian process - Wikipedia

    en.wikipedia.org/wiki/Gaussian_process

    Gaussian processes can also be used in the context of mixture of experts models, for example. [29] [30] The underlying rationale of such a learning framework consists in the assumption that a given mapping cannot be well captured by a single Gaussian process model. Instead, the observation space is divided into subsets, each of which is ...

  9. Subspace Gaussian mixture model - Wikipedia

    en.wikipedia.org/.../Subspace_Gaussian_mixture_model

    Subspace Gaussian mixture model (SGMM) is an acoustic modeling approach in which all phonetic states share a common Gaussian mixture model structure, and the means and mixture weights vary in a subspace of the total parameter space.