enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Word n-gram language model - Wikipedia

    en.wikipedia.org/wiki/Word_n-gram_language_model

    Syntactic n-grams are intended to reflect syntactic structure more faithfully than linear n-grams, and have many of the same applications, especially as features in a vector space model. Syntactic n-grams for certain tasks gives better results than the use of standard n-grams, for example, for authorship attribution. [12]

  3. n-gram - Wikipedia

    en.wikipedia.org/wiki/N-gram

    An n-gram is a sequence of n adjacent symbols in particular order. [1] The symbols may be n adjacent letters (including punctuation marks and blanks), syllables , or rarely whole words found in a language dataset; or adjacent phonemes extracted from a speech-recording dataset, or adjacent base pairs extracted from a genome.

  4. w-shingling - Wikipedia

    en.wikipedia.org/wiki/W-shingling

    In natural language processing a w-shingling is a set of unique shingles (therefore n-grams) each of which is composed of contiguous subsequences of tokens within a document, which can then be used to ascertain the similarity between documents. The symbol w denotes the quantity of tokens in each shingle selected, or solved for.

  5. Word embedding - Wikipedia

    en.wikipedia.org/wiki/Word_embedding

    In natural language processing, a word embedding is a representation of a word. The embedding is used in text analysis.Typically, the representation is a real-valued vector that encodes the meaning of the word in such a way that the words that are closer in the vector space are expected to be similar in meaning. [1]

  6. Random forest - Wikipedia

    en.wikipedia.org/wiki/Random_forest

    Decision tree learningMachine learning algorithm; Ensemble learning – Statistics and machine learning technique; Gradient boosting – Machine learning technique; Non-parametric statistics – Type of statistical analysis; Randomized algorithmAlgorithm that employs a degree of randomness as part of its logic or procedure

  7. Word2vec - Wikipedia

    en.wikipedia.org/wiki/Word2vec

    Embedding vectors created using the Word2vec algorithm have some advantages compared to earlier algorithms [1] such as those using n-grams and latent semantic analysis. GloVe was developed by a team at Stanford specifically as a competitor, and the original paper noted multiple improvements of GloVe over word2vec. [ 9 ]

  8. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    Empirically, for machine learning heuristics, choices of a function that do not satisfy Mercer's condition may still perform reasonably if at least approximates the intuitive idea of similarity. [6] Regardless of whether k {\displaystyle k} is a Mercer kernel, k {\displaystyle k} may still be referred to as a "kernel".

  9. Language model - Wikipedia

    en.wikipedia.org/wiki/Language_model

    A language model is a model of natural language. [1] Language models are useful for a variety of tasks, including speech recognition, [2] machine translation, [3] natural language generation (generating more human-like text), optical character recognition, route optimization, [4] handwriting recognition, [5] grammar induction, [6] and information retrieval.