Search results
Results from the WOW.Com Content Network
These generally covariant theories describes a spacetime endowed with both a metric and a unit timelike vector field named the aether. The aether in this theory is "a Lorentz-violating vector field" [1] unrelated to older luminiferous aether theories; the "Einstein" in the theory's name comes from its use of Einstein's general relativity ...
As historians such as John Stachel argue, Einstein's views on the "new aether" are not in conflict with his abandonment of the aether in 1905. As Einstein himself pointed out, no "substance" and no state of motion can be attributed to that new aether. [10] Einstein's use of the word "aether" found little support in the scientific community, and ...
But if one requires an exact solution or a solution describing strong fields, the evolution of both the metric and the stress–energy tensor must be solved for at once. To obtain solutions, the relevant equations are the above quoted EFE (in either form) plus the continuity equation (to determine the evolution of the stress–energy tensor):
1. First postulate (principle of relativity) The laws of physics take the same form in all inertial frames of reference.. 2. Second postulate (invariance of c) . As measured in any inertial frame of reference, light is always propagated in empty space with a definite velocity c that is independent of the state of motion of the emitting body.
1903 – Olinto De Pretto presents his aether theory with some form of mass–energy equivalence. [15] It was described by a formula looking like Einstein’s E = mc 2, but with different meanings of the terms. 1903 – Frederick Thomas Trouton and H.R. Noble publish the results of their experiment with capacitors, showing no aether drift. [16 ...
p. 40: "The cradle of special theory of relativity was the combination of Maxwellian electromagnetism and the electron theory of Lorentz (and to a lesser extent of Larmor) based on Fresnel's notion of the stationary aether…. It is well known that Einstein's special relativity was partially motivated by this failure [to find the aether wind ...
The minimal subgroup in question can be described as follows: The stabilizer of a null vector is the special Euclidean group SE(2), which contains T(2) as the subgroup of parabolic transformations. This T(2), when extended to include either parity or time reversal (i.e. subgroups of the orthochronous and time-reversal respectively), is ...
Einstein's paper includes a fundamental description of the kinematics of the rigid body, and it did not require an absolutely stationary space, such as the aether. Einstein identified two fundamental principles, the principle of relativity and the principle of the constancy of light (light principle), which served as the axiomatic basis of his ...