Search results
Results from the WOW.Com Content Network
The global form of an analytic function is completely determined by its local behavior in the following sense: if f and g are two analytic functions defined on the same connected open set U, and if there exists an element c ∈ U such that f (n) (c) = g (n) (c) for all n ≥ 0, then f(x) = g(x) for all x ∈ U. If a power series with radius of ...
The probability generating function is an example of a generating function of a sequence: see also formal power series. It is equivalent to, and sometimes called, the z-transform of the probability mass function.
A formal power series can be loosely thought of as an object that is like a polynomial, but with infinitely many terms.Alternatively, for those familiar with power series (or Taylor series), one may think of a formal power series as a power series in which we ignore questions of convergence by not assuming that the variable X denotes any numerical value (not even an unknown value).
Plot of the generalized hypergeometric function pFq(a b z) with a=(2,4,6,8) and b=(2,3,5,7,11) in the complex plane from -2-2i to 2+2i created with Mathematica 13.1 function ComplexPlot3D. In mathematics, a generalized hypergeometric series is a power series in which the ratio of successive coefficients indexed by n is a rational function of n.
The beta-binomial distribution, which describes the number of successes in a series of independent Yes/No experiments with heterogeneity in the success probability. The degenerate distribution at x 0, where X is certain to take the value x 0. This does not look random, but it satisfies the definition of random variable. This is useful because ...
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
A formal power series version of Zariski's main theorem says that if x is a normal point of a variety then it is analytically normal; in other words the completion of the local ring at x is a normal integral domain (Mumford 1999, III.9).
Alternatively, the equality can be justified by multiplying the power series on the left by 1 − x, and checking that the result is the constant power series 1 (in other words, that all coefficients except the one of x 0 are equal to 0). Moreover, there can be no other power series with this property.