enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Isentropic nozzle flow - Wikipedia

    en.wikipedia.org/wiki/Isentropic_Nozzle_Flow

    A nozzle for a supersonic flow must increase in area in the flow direction, and a diffuser must decrease in area, opposite to a nozzle and diffuser for a subsonic flow. So, for a supersonic flow to develop from a reservoir where the velocity is zero, the subsonic flow must first accelerate through a converging area to a throat, followed by ...

  3. Flow distribution in manifolds - Wikipedia

    en.wikipedia.org/wiki/Flow_distribution_in_manifolds

    [7] [8] [9] Because of inertial effects, the fluid will prefer to the straight direction. Thus the flow rate of the straight pipe is greater than that of the vertical one. Furthermore, because the lower energy fluid in the boundary layer branches through the channels the higher energy fluid in the pipe centre remains in the pipe as shown in Fig. 4.

  4. de Laval nozzle - Wikipedia

    en.wikipedia.org/wiki/De_Laval_nozzle

    A de Laval nozzle (or convergent-divergent nozzle, CD nozzle or con-di nozzle) is a tube which is pinched in the middle, with a rapid convergence and gradual divergence. It is used to accelerate a compressible fluid to supersonic speeds in the axial (thrust) direction, by converting the thermal energy of the flow into kinetic energy .

  5. Nozzle and flapper - Wikipedia

    en.wikipedia.org/wiki/Nozzle_and_flapper

    This restricts fluid flow through the nozzle and generates a pressure signal. It is a widely used mechanical means of creating a high gain fluid amplifier. In industrial control systems , they played an important part in the development of pneumatic PID controllers and are still widely used today in pneumatic and hydraulic control and ...

  6. Pipe network analysis - Wikipedia

    en.wikipedia.org/wiki/Pipe_network_analysis

    In fluid dynamics, pipe network analysis is the analysis of the fluid flow through a hydraulics network, containing several or many interconnected branches. The aim is to determine the flow rates and pressure drops in the individual sections of the network. This is a common problem in hydraulic design.

  7. SIMPLE algorithm - Wikipedia

    en.wikipedia.org/wiki/SIMPLE_algorithm

    In computational fluid dynamics (CFD), the SIMPLE algorithm is a widely used numerical procedure to solve the Navier–Stokes equations. SIMPLE is an acronym for Semi-Implicit Method for Pressure Linked Equations. The SIMPLE algorithm was developed by Prof. Brian Spalding and his student Suhas Patankar at Imperial College London in the early ...

  8. Losses in steam turbines - Wikipedia

    en.wikipedia.org/wiki/Losses_in_steam_turbines

    Frictional resistance is offered during the flow of steam through nozzles on moving and stationary blades. In most turbines, the blade wheels rotate in a space full of steam. The viscous friction at the wheel surface causes admission losses as steam passes from nozzle to wheel. The effect of partial admission creates eddies in the blade channels.

  9. Discharge coefficient - Wikipedia

    en.wikipedia.org/wiki/Discharge_coefficient

    In a nozzle or other constriction, the discharge coefficient (also known as coefficient of discharge or efflux coefficient) is the ratio of the actual discharge to the ideal discharge, [1] i.e., the ratio of the mass flow rate at the discharge end of the nozzle to that of an ideal nozzle which expands an identical working fluid from the same initial conditions to the same exit pressures.