Search results
Results from the WOW.Com Content Network
The superior planets, orbiting outside the Earth's orbit, do not exhibit a full range of phases since their maximum phase angles are smaller than 90°. Mars often appears significantly gibbous, it has a maximum phase angle of 45°. Jupiter has a maximum phase angle of 11.1° and Saturn of 6°, [1] so their phases are almost always full.
Superior planets, dwarf planets and asteroids undergo a different cycle. After conjunction, such an object's elongation continues to increase until it approaches a maximum value larger than 90° (impossible with inferior planets) which is known as opposition and can also be examined as a heliocentric conjunction with Earth. This is archetypally ...
For some objects, such as the Moon (see lunar phases), Venus and Mercury the phase angle (as seen from the Earth) covers the full 0–180° range. The superior planets cover shorter ranges. For example, for Mars the maximum phase angle is about 45°. For Jupiter, the maximum is 11.1° and for Saturn 6°. [1]
In the reference frame of the Earth, where the terms were originally used, the inferior planets are Mercury and Venus, while the superior planets are Mars, Jupiter, Saturn, Uranus and Neptune. Dwarf planets like Ceres or Pluto and most asteroids are 'superior' in the sense that they almost all orbit outside the orbit of Earth.
The phase curve of Venus [15] compared to Mercury, [1] and the brightness excess of Venus.. The relatively flat phase curve of Venus is characteristic of a cloudy planet. [14] In contrast to Mercury where the curve is strongly peaked approaching phase angle zero (full phase) that of Venus is rounded.
Diagram showing the eastern and western quadratures of a superior planet like Mars. In spherical astronomy, quadrature is the configuration of a celestial object in which its elongation is a right angle (90 degrees), i.e., the direction of the object as viewed from Earth is perpendicular to the position of the Sun relative to Earth.
It was not until Galileo Galilei observed the moons of Jupiter on 7 January 1610, and the phases of Venus in September 1610, that the heliocentric model began to receive broad support among astronomers, who also came to accept the notion that the planets are individual worlds orbiting the Sun (that is, that the Earth is a planet, too).
Seen from a superior planet, an inferior planet on the opposite side of the Sun is in superior conjunction with the Sun. An inferior conjunction occurs when the two planets align on the same side of the Sun. At inferior conjunction, the superior planet is "in opposition" to the Sun as seen from the inferior planet (see the diagram).