Search results
Results from the WOW.Com Content Network
Database normalization is the process of structuring a relational database accordance with a series of so-called normal forms in order to reduce data redundancy and improve data integrity. It was first proposed by British computer scientist Edgar F. Codd as part of his relational model .
Snowflake schema used by example query. The example schema shown to the right is a snowflaked version of the star schema example provided in the star schema article. The following example query is the snowflake schema equivalent of the star schema example code which returns the total number of television units sold by brand and by country for 1997.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
The purpose of this normalization is to increase flexibility and data independence, and to simplify the data language. It also opens the door to further normalization, which eliminates redundancy and anomalies. Most relational database management systems do not support nested records, so tables are in first normal form by default.
In the field of relational database design, normalization is a systematic way of ensuring that a database structure is suitable for general-purpose querying and free of certain undesirable characteristics—insertion, update, and deletion anomalies that could lead to loss of data integrity.
In the object-oriented application programming paradigm, which is related to database structure design, UML class diagrams may be used for object modeling. In that case, object relationships are modeled using UML associations, and multiplicity is used on those associations to denote cardinality. Here are some examples: [5]
This was the first time the notion of a relational database was published. All work after this, including the Boyce–Codd normal form method was based on this relational model. The Boyce–Codd normal form was first described by Ian Heath in 1971, and has also been called Heath normal form by Chris Date .
For example, appending addresses with any phone numbers related to that address. Data cleansing may also involve harmonization (or normalization) of data, which is the process of bringing together data of "varying file formats, naming conventions, and columns", [ 2 ] and transforming it into one cohesive data set; a simple example is the ...