Search results
Results from the WOW.Com Content Network
An omega−3 fatty acid is a fatty acid with multiple double bonds, where the first double bond is between the third and fourth carbon atoms from the end of the carbon atom chain. "Short-chain" omega−3 fatty acids have a chain of 18 carbon atoms or less, while "long-chain" omega−3 fatty acids have a chain of 20 or more.
Omega−3 fatty acids are important for normal metabolism. [ 2 ] Mammals are unable to synthesize omega−3 fatty acids, but can obtain the shorter-chain omega−3 fatty acid ALA (18 carbons and 3 double bonds) through diet and use it to form the more important long-chain omega−3 fatty acids, EPA (20 carbons and 5 double bonds) and then from ...
Docosahexaenoic acid (DHA) is an omega−3 fatty acid that is an important component of the human brain, cerebral cortex, skin, and retina. It is given the fatty acid notation 22:6( n −3) . [ 1 ] It can be synthesized from alpha-linolenic acid or obtained directly from maternal milk (breast milk), fatty fish, fish oil, or algae oil.
In physiological literature, it is listed by its lipid number, 18:3 (n−3). It is a carboxylic acid with an 18-carbon chain and three cis double bonds. The first double bond is located at the third carbon from the methyl end of the fatty acid chain, known as the n end. Thus, α-linolenic acid is a polyunsaturated n−3 (omega-3
Linolenic acid is a type of naturally-occurring fatty acid. It can refer to either of two octadecatrienoic acids (i.e. with an 18-carbon chain and three double bonds, which are found in the cis configuration), or a mixture of the two.
In chemical structure, EPA is a carboxylic acid with a 20-carbon chain and five cis double bonds; the first double bond is located at the third carbon from the omega end. EPA is a polyunsaturated fatty acid (PUFA) that acts as a precursor for prostaglandin-3 (which inhibits platelet aggregation ), thromboxane-3 , and leukotriene-5 eicosanoids .
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
These enzymes are O 2-dependent, consistent with their function as either hydroxylation or oxidative dehydrogenation. [3] Desaturases produce unsaturated fatty acids. Unsaturated fatty acids help maintain structure and function of membranes. Highly unsaturated fatty acids are incorporated into phospholipids and participate in cell signaling. [4]