Search results
Results from the WOW.Com Content Network
The reduction rate of the cycloidal drive is obtained from the following formula, where P means the number of the ring gear pins and L is the number of lobes on the cycloidal disc. = Single-stage efficiency approaches 93% and double-stage approaches 86%. [3]
An epicyclic gear train (also known as a planetary gearset) is a gear reduction assembly consisting of two gears mounted so that the center of one gear (the "planet") revolves around the center of the other (the "sun"). A carrier connects the centers of the two gears and rotates, to carry the planet gear(s) around the sun gear.
A magnetic gear is composed of magnets of the type permanent, electromagnetic or otherwise magnetically induced fields. It consists of two or more elements that are usually rotating but can be linear or curve linear in nature. The classical gear is defined as a ratio of pole pairs. Where the Pole pairs are magnets N-S and S-N in nature.
High gear reduction ratios are possible in a small volume (a ratio from 30:1 up to 320:1 is possible in the same space in which planetary gears typically only produce a 10:1 ratio). Disadvantages include a tendency for 'wind-up' (a torsional spring rate) in the low torque region. Strain wave gearing is commonly used in robotics [3] and ...
Total face width is the actual dimension of a gear blank including the portion that exceeds the effective face width, or as in double helical gears where the total face width includes any distance or gap separating right hand and left hand helices. For a cylindrical gear, effective face width is the portion that contacts the mating teeth.
And, if the output gear has fewer teeth than the input gear, then the gear train reduces the input torque. If the output gear of a gear train rotates more slowly than the input gear, then the gear train is called a speed reducer (Force multiplier). In this case, because the output gear must have more teeth than the input gear, the speed reducer ...
Two intermeshing spur gears rotating at different velocity due to differing gear ratio. A gear [1] [2] or gearwheel [3] [4] [5] is a rotating machine part typically used to transmit rotational motion and/or torque by means of a series of teeth that engage with compatible teeth of another gear or other part.
The gear ratio of the pitch circles of mating gears defines the speed ratio and the mechanical advantage of the gear set. A planetary gear train provides high gear reduction in a compact package. It is possible to design gear teeth for gears that are non-circular, yet still transmit torque smoothly.