Search results
Results from the WOW.Com Content Network
Automatic face detection with OpenCV. Face detection is a computer technology being used in a variety of applications that identifies human faces in digital images. [1] Face detection also refers to the psychological process by which humans locate and attend to faces in a visual scene.
Face recognition has been leveraged as a form of biometric authentication for various computing platforms and devices; [37] Android 4.0 "Ice Cream Sandwich" added facial recognition using a smartphone's front camera as a means of unlocking devices, [66] [67] while Microsoft introduced face recognition login to its Xbox 360 video game console ...
[23] [24] Flutter inherits Dart's Pub package manager and software repository, which allows users to publish and use custom packages as well as Flutter-specific plugins. [25] The Foundation library, written in Dart, provides basic classes and functions that are used to construct applications using Flutter, such as APIs to communicate with the ...
Face detection, often a step done before facial recognition; Face perception, the process by which the human brain understands and interprets the face; Pareidolia, which involves, in part, seeing images of faces in clouds and other scenes; Facial recognition system, an automated system with the ability to identify individuals by their facial ...
The technique used in creating eigenfaces and using them for recognition is also used outside of face recognition: handwriting recognition, lip reading, voice recognition, sign language/hand gestures interpretation and medical imaging analysis. Therefore, some do not use the term eigenface, but prefer to use 'eigenimage'.
Three-dimensional face recognition (3D face recognition) is a modality of facial recognition methods in which the three-dimensional geometry of the human face is used. It has been shown that 3D face recognition methods can achieve significantly higher accuracy than their 2D counterparts, rivaling fingerprint recognition .
For application to human action recognition in a video sequence, sampling of the training videos is carried out either at spatio-temporal interest points or at randomly determined locations, times and scales. The spatio-temporal regions around these interest points are then described using the 3D SIFT descriptor.
The app utilizes gesture recognition technology that works with the webcam on a user's computer. [1] [2] Instead of requiring separate hardware, such as Microsoft’s Kinect, Flutter makes use of the built-in webcam to recognize the gestures of a person's hands between one and six feet away.