Search results
Results from the WOW.Com Content Network
On a skew-T log-P diagram, CIN is any area between the warmer environment virtual temperature profile and the cooler parcel virtual temperature profile. CIN is effectively negative buoyancy, expressed B-; the opposite of convective available potential energy (CAPE), which is expressed as B+ or simply B.
This integral is the work done by the buoyant force minus the work done against gravity, hence it's the excess energy that can become kinetic energy. CAPE for a given region is most often calculated from a thermodynamic or sounding diagram (e.g., a Skew-T log-P diagram) using air temperature and dew point data usually measured by a weather balloon.
CAPE is effectively the positive buoyancy of an air parcel and is an indicator of atmospheric instability, which makes it valuable in predicting severe weather. CIN, convective inhibition, is effectively negative buoyancy, expressed B-; the opposite of convective available potential energy (CAPE), which is
Buoyant convection begins at the level of free convection (LFC), above which an air parcel may ascend through the free convective layer (FCL) with positive buoyancy. Its buoyancy turns negative at the equilibrium level (EL), but the parcel's vertical momentum may carry it to the maximum parcel level (MPL) where the negative buoyancy decelerates ...
In atmospheric dynamics, oceanography, asteroseismology and geophysics, the Brunt–Väisälä frequency, or buoyancy frequency, is a measure of the stability of a fluid to vertical displacements such as those caused by convection. More precisely it is the frequency at which a vertically displaced parcel will oscillate within a statically ...
The stack effect or chimney effect is the movement of air into and out of buildings through unsealed openings, chimneys, flue-gas stacks, or other purposefully designed openings or containers, resulting from air buoyancy. Buoyancy occurs due to a difference in indoor-to-outdoor air density resulting from temperature and moisture differences ...
The intrusion of more buoyant asthenosphere making contact with the crust and replacing dense lower lithosphere must occur. The metamorphic transition from mafic granulite facies to the denser eclogite facies in the lower portion of the crust is the main mechanism responsible for creating negative buoyancy of the lower lithosphere. [3]
Turbulence kinetic energy is then transferred down the turbulence energy cascade, and is dissipated by viscous forces at the Kolmogorov scale. This process of production, transport and dissipation can be expressed as: D k D t + ∇ ⋅ T ′ = P − ε , {\displaystyle {\frac {Dk}{Dt}}+\nabla \cdot T'=P-\varepsilon ,} where: [ 1 ]