enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravitational energy - Wikipedia

    en.wikipedia.org/wiki/Gravitational_energy

    For two pairwise interacting point particles, the gravitational potential energy is the work that an outside agent must do in order to quasi-statically bring the masses together (which is therefore, exactly opposite the work done by the gravitational field on the masses): = = where is the displacement vector of the mass, is gravitational force acting on it and denotes scalar product.

  3. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    In the Einstein field equations, it quantifies the relation between the geometry of spacetime and the energy–momentum tensor (also referred to as the stress–energy tensor). The measured value of the constant is known with some certainty to four significant digits. In SI units, its value is approximately 6.6743 × 10 −11 m 3 kg −1 s −2 ...

  4. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    Before Newton’s law of gravity, there were many theories explaining gravity. Philoshophers made observations about things falling down − and developed theories why they do – as early as Aristotle who thought that rocks fall to the ground because seeking the ground was an essential part of their nature. [6]

  5. Characteristic energy - Wikipedia

    en.wikipedia.org/wiki/Characteristic_energy

    Every object in a 2-body ballistic trajectory has a constant specific orbital energy equal to the sum of its specific kinetic and specific potential energy: = = =, where = is the standard gravitational parameter of the massive body with mass , and is the radial distance from its center. As an object in an escape trajectory moves outward, its ...

  6. Specific orbital energy - Wikipedia

    en.wikipedia.org/wiki/Specific_orbital_energy

    The increase per meter would be 4.4 J/kg; this rate corresponds to one half of the local gravity of 8.8 m/s 2. For an altitude of 100 km (radius is 6471 km): The energy is −30.8 MJ/kg: the potential energy is −61.6 MJ/kg, and the kinetic energy 30.8 MJ/kg. Compare with the potential energy at the surface, which is −62.6 MJ/kg.

  7. Specific energy - Wikipedia

    en.wikipedia.org/wiki/Specific_energy

    Specific mechanical energy, rather than simply energy, is often used in astrodynamics, because gravity changes the kinetic and potential specific energies of a vehicle in ways that are independent of the mass of the vehicle, consistent with the conservation of energy in a Newtonian gravitational system.

  8. Findings by dark energy researchers back Einstein's ... - AOL

    www.aol.com/news/findings-dark-energy...

    Gravity is one of the universe's fundamental forces. Einstein's theory linked space, time and gravity. It holds that concentrations of mass and energy curve the structure of space-time ...

  9. Interatomic potential - Wikipedia

    en.wikipedia.org/wiki/Interatomic_potential

    Here is the one-body term, the two-body term, the three body term, the number of atoms in the system, the position of atom , etc. , and are indices that loop over atom positions. Note that in case the pair potential is given per atom pair, in the two-body term the potential should be multiplied by 1/2 as otherwise each bond is counted twice ...

  1. Related searches how do we calculate gravity energy or work space table for one atom of sodium

    gravity constant chartgravitational potential of energy