Search results
Results from the WOW.Com Content Network
Such a scaling changes the diameter of an object by a factor between the scale factors, the area by a factor between the smallest and the largest product of two scale factors, and the volume by the product of all three. The scaling is uniform if and only if the scaling factors are equal (v x = v y = v z). If all except one of the scale factors ...
Laguerre defined the power of a point P with respect to an algebraic curve of degree n to be the sum of the distances from the point to the intersections of a circle through the point with the curve, divided by the nth power of the diameter d. Laguerre showed that this number is independent of the diameter (Laguerre 1905).
In mathematics, a spherical coordinate system specifies a given point in three-dimensional space by using a distance and two angles as its three coordinates. These are the radial distance r along the line connecting the point to a fixed point called the origin; the polar angle θ between this radial line and a given polar axis; [a] and
This operation takes a vector X p at a point p and produces a covector g p (X p, −). In a basis of vector fields f, if a vector field X has components v[f], then the components of the covector field g(X, −) in the dual basis are given by the entries of the row vector
The AOL.com video experience serves up the best video content from AOL and around the web, curating informative and entertaining snackable videos.
Prolate spheroidal coordinates μ and ν for a = 1.The lines of equal values of μ and ν are shown on the xz-plane, i.e. for φ = 0.The surfaces of constant μ and ν are obtained by rotation about the z-axis, so that the diagram is valid for any plane containing the z-axis: i.e. for any φ.
The point from which the object is viewed is called the apex of the solid angle, and the object is said to subtend its solid angle at that point. In the International System of Units (SI), a solid angle is expressed in a dimensionless unit called a steradian (symbol: sr), which is equal to one square radian, sr = rad 2 .
Historically, the curvature of a differentiable curve was defined through the osculating circle, which is the circle that best approximates the curve at a point. More precisely, given a point P on a curve, every other point Q of the curve defines a circle (or sometimes a line) passing through Q and tangent to the curve at P.