enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chain rule - Wikipedia

    en.wikipedia.org/wiki/Chain_rule

    Constantin Carathéodory's alternative definition of the differentiability of a function can be used to give an elegant proof of the chain rule. [6] Under this definition, a function f is differentiable at a point a if and only if there is a function q, continuous at a and such that f(x) − f(a) = q(x)(x − a).

  3. Chain rule (probability) - Wikipedia

    en.wikipedia.org/wiki/Chain_rule_(probability)

    This rule allows one to express a joint probability in terms of only conditional probabilities. [4] The rule is notably used in the context of discrete stochastic processes and in applications, e.g. the study of Bayesian networks, which describe a probability distribution in terms of conditional probabilities.

  4. Chain rule for Kolmogorov complexity - Wikipedia

    en.wikipedia.org/wiki/Chain_rule_for_Kolmogorov...

    The chain rule [citation needed] for Kolmogorov complexity is an analogue of the chain rule for information entropy, which states: (,) = + (|)That is, the combined randomness of two sequences X and Y is the sum of the randomness of X plus whatever randomness is left in Y once we know X.

  5. Faà di Bruno's formula - Wikipedia

    en.wikipedia.org/wiki/Faà_di_Bruno's_formula

    Faà di Bruno's formula is an identity in mathematics generalizing the chain rule to higher derivatives. It is named after Francesco Faà di Bruno (1855, 1857), although he was not the first to state or prove the formula.

  6. Triple product rule - Wikipedia

    en.wikipedia.org/wiki/Triple_product_rule

    Suppose a function f(x, y, z) = 0, where x, y, and z are functions of each other. Write the total differentials of the variables = + = + Substitute dy into dx = [() + ()] + By using the chain rule one can show the coefficient of dx on the right hand side is equal to one, thus the coefficient of dz must be zero () + = Subtracting the second term and multiplying by its inverse gives the triple ...

  7. Parametric derivative - Wikipedia

    en.wikipedia.org/wiki/Parametric_derivative

    This can be derived using the chain rule for derivatives: = and dividing both sides by to give the equation above. In general all of these derivatives — dy / dt , dx / dt , and dy / dx — are themselves functions of t and so can be written more explicitly as, for example, d y d x ( t ) {\displaystyle {\frac {dy}{dx}}(t)} .

  8. Category:Articles containing proofs - Wikipedia

    en.wikipedia.org/wiki/Category:Articles...

    Chain rule; Chain rule for Kolmogorov complexity; Characterizations of the exponential function; Chebyshev's inequality; Chinese remainder theorem; Choi's theorem on completely positive maps; Cipolla's algorithm; Cissoid of Diocles; Classical orthogonal polynomials; Commutator subgroup; Compact operator on Hilbert space; Completing the square

  9. Total derivative - Wikipedia

    en.wikipedia.org/wiki/Total_derivative

    The chain rule has a particularly elegant statement in terms of total derivatives. It says that, for two functions f {\displaystyle f} and g {\displaystyle g} , the total derivative of the composite function f ∘ g {\displaystyle f\circ g} at a {\displaystyle a} satisfies