Search results
Results from the WOW.Com Content Network
Two enantiomers of a generic amino acid that is chiral. Chiral molecules have two forms (at each point of asymmetry), which differ in their optical characteristics: The levorotatory form (the (−)-form) will rotate counter-clockwise on the plane of polarization of a beam of light, whereas the dextrorotatory form (the (+)-form) will rotate clockwise on the plane of polarization of a beam of ...
Dextrorotation and laevorotation (also spelled levorotation) [1] [2] in chemistry and physics are the optical rotation of plane-polarized light. From the point of view of the observer, dextrorotation refers to clockwise or right-handed rotation, and laevorotation refers to counterclockwise or left-handed rotation.
The D/L labeling is unrelated to (+)/(−) – it does not indicate which enantiomer is dextrorotatory and which is levorotatory. Rather, it indicates the compound's stereochemistry relative to that of the dextrorotatory or levorotatory enantiomer of glyceraldehyde. The dextrorotatory isomer of glyceraldehyde is, in fact, the D-isomer.
Pages for logged out editors learn more. Contributions; Talk; Dextrorotation and levorotation
There are three common naming conventions for specifying one of the two enantiomers (the absolute configuration) of a given chiral molecule: the R/S system is based on the geometry of the molecule; the (+)- and (−)- system (also written using the obsolete equivalents d- and l-) is based on its optical rotation properties; and the D/L system is based on the molecule's relationship to ...
The CRC Handbook of Chemistry and Physics defines specific rotation as: For an optically active substance, defined by [α] θ λ = α/γl, where α is the angle through which plane polarized light is rotated by a solution of mass concentration γ and path length l.
In a solution, the (−)-form, or levorotatory form, of an optical isomer rotates the plane of a beam of linearly polarized light counterclockwise. The (+)-form, or dextrorotatory form, of an optical isomer does the opposite.
Sometimes the small capital D- and L- stereodescriptors mentioned above are mistakenly confused with the obsolete italic d- and l- stereodescriptors, which are equivalent with dextrorotatory and levorotatory optical rotation, i.e. (+)- and (−)- stereodescriptors, respectively.