enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Graph neural network - Wikipedia

    en.wikipedia.org/wiki/Graph_neural_network

    The graph attention network (GAT) was introduced by Petar Veličković et al. in 2018. [11] Graph attention network is a combination of a GNN and an attention layer. The implementation of attention layer in graphical neural networks helps provide attention or focus to the important information from the data instead of focusing on the whole data.

  3. Generative adversarial network - Wikipedia

    en.wikipedia.org/wiki/Generative_adversarial_network

    A generative adversarial network (GAN) is a class of machine learning frameworks and a prominent framework for approaching generative artificial intelligence. The concept was initially developed by Ian Goodfellow and his colleagues in June 2014. [ 1 ]

  4. What is generative adversarial network (GAN) — and how it ...

    www.aol.com/generative-adversarial-network-gan...

    What came out of that fateful meeting was “generative adversarial network” or (GAN), an innovation that AI experts have described as the “coolest idea in deep learning in the last 20 years.”

  5. Flow-based generative model - Wikipedia

    en.wikipedia.org/wiki/Flow-based_generative_model

    A flow-based generative model is a generative model used in machine learning that explicitly models a probability distribution by leveraging normalizing flow, [1] [2] [3] which is a statistical method using the change-of-variable law of probabilities to transform a simple distribution into a complex one.

  6. Wasserstein GAN - Wikipedia

    en.wikipedia.org/wiki/Wasserstein_GAN

    The Wasserstein Generative Adversarial Network (WGAN) is a variant of generative adversarial network (GAN) proposed in 2017 that aims to "improve the stability of learning, get rid of problems like mode collapse, and provide meaningful learning curves useful for debugging and hyperparameter searches". [1] [2]

  7. Liang Zhao - Wikipedia

    en.wikipedia.org/wiki/Liang_Zhao

    Liang Zhao is a computer scientist and academic. He is an associate professor in the Department of Computer Science at Emory University. [1]Zhao's research focuses on data mining, machine learning, and artificial intelligence, with particular interests in deep learning on graphs, societal event prediction, interpretable machine learning, multi-modal machine learning, generative AI, and ...

  8. Mathematics of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_artificial...

    Networks such as the previous one are commonly called feedforward, because their graph is a directed acyclic graph. Networks with cycles are commonly called recurrent. Such networks are commonly depicted in the manner shown at the top of the figure, where is shown as dependent upon itself. However, an implied temporal dependence is not shown.

  9. Exponential family random graph models - Wikipedia

    en.wikipedia.org/wiki/Exponential_family_random...

    Exponential Random Graph Models (ERGMs) are a family of statistical models for analyzing data from social and other networks. [1] [2] Examples of networks examined using ERGM include knowledge networks, [3] organizational networks, [4] colleague networks, [5] social media networks, networks of scientific development, [6] and others.