Search results
Results from the WOW.Com Content Network
In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]
Slipped strand mispairing is one explanation for the origin and evolution of repetitive DNA sequences. [1] It is a form of mutation that leads to either a trinucleotide or dinucleotide expansion, or sometimes contraction, during DNA replication. [2] A slippage event normally occurs when a sequence of repetitive nucleotides (tandem repeats) are ...
Denaturation Mapping is a form of optical mapping, first described in 1966. It is used to characterize DNA molecules without the need for amplification or sequencing . It is based on the differences between the melting temperatures of AT-rich and GC-rich regions. [ 1 ]
The most famous example is the hyperchromicity of DNA that occurs when the DNA duplex is denatured. [1] The UV absorption is increased when the two single DNA strands are being separated, either by heat or by addition of denaturant or by increasing the pH level. The opposite, a decrease of absorbance is called hypochromicity.
Nucleic acid thermodynamics is the study of how temperature affects the nucleic acid structure of double-stranded DNA (dsDNA). The melting temperature (T m) is defined as the temperature at which half of the DNA strands are in the random coil or single-stranded (ssDNA) state. T m depends on the length of the DNA molecule and its specific ...
The PCR tubes are then placed in a thermal cycler to begin cycling. In the first cycle, the synthesis of cDNA occurs. The second cycle is the initial denaturation wherein reverse transcriptase is inactivated. The remaining 40-50 cycles are the amplification, which includes denaturation, annealing, and elongation.
This is because G-C base pairing have 3 hydrogen bonds between them while A-T base pairs have only 2. DNA with mutations from either A or T to either C or G will create a higher melting temperature. The information also gives vital clues to a molecule's mode of interaction with DNA.
Thus the analysis of denaturation data with this model requires 7 parameters: ,, k, and the slopes and intercepts of the folded and unfolded state baselines. The solvent exchange model (also called the ‘weak binding model’ or ‘selective solvation’) of Schellman invokes the idea of an equilibrium between the water molecules bound to ...