enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fresnel lens - Wikipedia

    en.wikipedia.org/wiki/Fresnel_lens

    The design allows the construction of lenses of large aperture and short focal length without the mass and volume of material that would be required by a lens of conventional design. A Fresnel lens can be made much thinner than a comparable conventional lens, in some cases taking the form of a flat sheet.

  3. Zone plate - Wikipedia

    en.wikipedia.org/wiki/Zone_plate

    Unlike lenses or curved mirrors, zone plates use diffraction instead of refraction or reflection. Based on analysis by French physicist Augustin-Jean Fresnel, they are sometimes called Fresnel zone plates in his honor. The zone plate's focusing ability is an extension of the Arago spot phenomenon caused by diffraction from an opaque disc. [2]

  4. Augustin-Jean Fresnel - Wikipedia

    en.wikipedia.org/wiki/Augustin-Jean_Fresnel

    Augustin-Jean Fresnel [Note 1] (10 May 1788 – 14 July 1827) was a French civil engineer and physicist whose research in optics led to the almost unanimous acceptance of the wave theory of light, excluding any remnant of Newton's corpuscular theory, from the late 1830s [3] until the end of the 19th century.

  5. Catadioptric system - Wikipedia

    en.wikipedia.org/wiki/Catadioptric_system

    Houghton doublet corrector design equations – special case symmetric design. The Houghton telescope or Lurie–Houghton telescope is a design that uses a wide compound positive-negative lens over the entire front aperture to correct spherical aberration of the main mirror. If desired, the two corrector elements can be made with the same type ...

  6. Reflectance - Wikipedia

    en.wikipedia.org/wiki/Reflectance

    Reflectivity is the square of the magnitude of the Fresnel reflection coefficient, [4] which is the ratio of the reflected to incident electric field; [5] as such the reflection coefficient can be expressed as a complex number as determined by the Fresnel equations for a single layer, whereas the reflectance is always a positive real number.

  7. Fresnel equations - Wikipedia

    en.wikipedia.org/wiki/Fresnel_equations

    The Fresnel equations (or Fresnel coefficients) describe the reflection and transmission of light (or electromagnetic radiation in general) when incident on an interface between different optical media.

  8. Huygens–Fresnel principle - Wikipedia

    en.wikipedia.org/wiki/Huygens–Fresnel_principle

    The Huygens–Fresnel principle (named after Dutch physicist Christiaan Huygens and French physicist Augustin-Jean Fresnel) states that every point on a wavefront is itself the source of spherical wavelets, and the secondary wavelets emanating from different points mutually interfere. [1] The sum of these spherical wavelets forms a new wavefront.

  9. Transfer-matrix method (optics) - Wikipedia

    en.wikipedia.org/wiki/Transfer-matrix_method...

    The overall reflection of a layer structure is the sum of an infinite number of reflections. The transfer-matrix method is based on the fact that, according to Maxwell's equations , there are simple continuity conditions for the electric field across boundaries from one medium to the next.