Search results
Results from the WOW.Com Content Network
A formal power series can be loosely thought of as an object that is like a polynomial, but with infinitely many terms.Alternatively, for those familiar with power series (or Taylor series), one may think of a formal power series as a power series in which we ignore questions of convergence by not assuming that the variable X denotes any numerical value (not even an unknown value).
The existence of the radius of convergence results from the similar existence for a power series, applied to /, considered as a power series in /. It is a part of Newton–Puiseux theorem that the provided Puiseux series have a positive radius of convergence, and thus define a ( multivalued ) analytic function in some neighborhood of zero (zero ...
In mathematics, a power series (in one variable) is an infinite series of the form = = + + + … where represents the coefficient of the nth term and c is a constant called the center of the series. Power series are useful in mathematical analysis , where they arise as Taylor series of infinitely differentiable functions .
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
In mathematics, the Bell series is a formal power series used to study properties of arithmetical functions. Bell series were introduced and developed by Eric Temple Bell . Given an arithmetic function f {\displaystyle f} and a prime p {\displaystyle p} , define the formal power series f p ( x ) {\displaystyle f_{p}(x)} , called the Bell series ...
The probability generating function is an example of a generating function of a sequence: see also formal power series. It is equivalent to, and sometimes called, the z-transform of the probability mass function.
The power rule for integrals was first demonstrated in a geometric form by Italian mathematician Bonaventura Cavalieri in the early 17th century for all positive integer values of , and during the mid 17th century for all rational powers by the mathematicians Pierre de Fermat, Evangelista Torricelli, Gilles de Roberval, John Wallis, and Blaise ...
The exponential function (in blue), and the sum of the first n + 1 terms of its power series (in red) where ! is the factorial of n (the product of the n first positive integers). This series is absolutely convergent for every per the ratio test. So, the derivative of the sum can be computed by term-by-term derivation, and this shows that the ...