enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Karger's algorithm - Wikipedia

    en.wikipedia.org/wiki/Karger's_algorithm

    A graph and two of its cuts. The dotted line in red is a cut with three crossing edges. The dashed line in green is a min-cut of this graph, crossing only two edges. In computer science and graph theory, Karger's algorithm is a randomized algorithm to compute a minimum cut of a connected graph. It was invented by David Karger and first ...

  3. Minimum cut - Wikipedia

    en.wikipedia.org/wiki/Minimum_cut

    The dotted line in red represents a cut with three crossing edges. The dashed line in green represents one of the minimum cuts of this graph, crossing only two edges. [1] In graph theory, a minimum cut or min-cut of a graph is a cut (a partition of the vertices of a graph into two disjoint subsets) that is minimal in some metric.

  4. Stoer–Wagner algorithm - Wikipedia

    en.wikipedia.org/wiki/Stoer–Wagner_algorithm

    A min-cut of a weighted graph having min-cut weight 4 [1] In graph theory, the Stoer–Wagner algorithm is a recursive algorithm to solve the minimum cut problem in undirected weighted graphs with non-negative weights. It was proposed by Mechthild Stoer and Frank Wagner in 1995.

  5. Cut (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Cut_(graph_theory)

    The illustration on the right shows a minimum cut: the size of this cut is 2, and there is no cut of size 1 because the graph is bridgeless. The max-flow min-cut theorem proves that the maximum network flow and the sum of the cut-edge weights of any minimum cut that separates the source and the sink are equal. There are polynomial-time methods ...

  6. Graph cut optimization - Wikipedia

    en.wikipedia.org/wiki/Graph_cut_optimization

    Graph cut optimization is a combinatorial optimization method applicable to a family of functions of discrete variables, named after the concept of cut in the theory of flow networks. Thanks to the max-flow min-cut theorem , determining the minimum cut over a graph representing a flow network is equivalent to computing the maximum flow over the ...

  7. HCS clustering algorithm - Wikipedia

    en.wikipedia.org/wiki/HCS_clustering_algorithm

    The running time of the HCS clustering algorithm is bounded by N × f(n, m). f(n, m) is the time complexity of computing a minimum cut in a graph with n vertices and m edges, and N is the number of clusters found. In many applications N << n. For fast algorithms for finding a minimum cut in an unweighted graph:

  8. Gomory–Hu tree - Wikipedia

    en.wikipedia.org/wiki/Gomory–Hu_tree

    In combinatorial optimization, the Gomory–Hu tree [1] of an undirected graph with capacities is a weighted tree that represents the minimum s-t cuts for all s-t pairs in the graph. The Gomory–Hu tree can be constructed in | V | − 1 maximum flow computations.

  9. Graph cuts in computer vision - Wikipedia

    en.wikipedia.org/wiki/Graph_cuts_in_computer_vision

    Many of these energy minimization problems can be approximated by solving a maximum flow problem in a graph [2] (and thus, by the max-flow min-cut theorem, define a minimal cut of the graph). Under most formulations of such problems in computer vision, the minimum energy solution corresponds to the maximum a posteriori estimate of a solution.