Search results
Results from the WOW.Com Content Network
For example, the union of three sets A, B, and C contains all elements of A, all elements of B, and all elements of C, and nothing else. Thus, x is an element of A ∪ B ∪ C if and only if x is in at least one of A, B, and C. A finite union is the union of a finite number of sets; the phrase does not imply that the union set is a finite set ...
The simple theorems in the algebra of sets are some of the elementary properties of the algebra of union (infix operator: ∪), intersection (infix operator: ∩), and set complement (postfix ') of sets. These properties assume the existence of at least two sets: a given universal set, denoted U, and the empty set, denoted {}.
The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".
Intersections of the unaccented modern Greek, Latin, and Cyrillic scripts, considering only the shapes of the letters and ignoring their pronunciation Example of an intersection with sets The intersection of two sets A {\displaystyle A} and B , {\displaystyle B,} denoted by A ∩ B {\displaystyle A\cap B} , [ 3 ] is the set of all objects that ...
The kernel of the sunflower is the brown part in the middle, and each set of the sunflower is the union of a petal and the kernel. In the mathematical fields of set theory and extremal combinatorics, a sunflower or -system [1] is a collection of sets in which all possible distinct pairs of sets share the same intersection.
The second condition states that the intersection of every couple of sets in the nested set collection is not the empty set only if one set is a subset of the other. [ 2 ] In particular, when scanning all pairs of subsets at the second condition, it is true for any combination with B .
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
A σ-algebra of subsets is a set algebra of subsets; elements of the latter only need to be closed under the union or intersection of finitely many subsets, which is a weaker condition. [ 2 ] The main use of σ-algebras is in the definition of measures ; specifically, the collection of those subsets for which a given measure is defined is ...