enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Word wall - Wikipedia

    en.wikipedia.org/wiki/Word_wall

    Word walls can be used in classrooms ranging from pre-school through high school.Word walls are becoming commonplace in classrooms for all subject areas. High schools teachers use word walls in their respective content areas to teach spelling, vocabulary words, and mathematics symbols.

  3. List of numbers - Wikipedia, the free encyclopedia

    en.wikipedia.org/wiki/List_of_numbers

    A list of articles about numbers (not about numerals). Topics include powers of ten, notable integers, prime and cardinal numbers, and the myriad system.

  4. Square triangular number - Wikipedia

    en.wikipedia.org/wiki/Square_triangular_number

    Consequently, a square number is also triangular if and only if + is square, that is, there are numbers and such that =. This is an instance of the Pell equation x 2 − n y 2 = 1 {\displaystyle x^{2}-ny^{2}=1} with n = 8 {\displaystyle n=8} .

  5. 36 (number) - Wikipedia

    en.wikipedia.org/wiki/36_(number)

    Since it is possible to find sequences of 36 consecutive integers such that each inner member shares a factor with either the first or the last member, 36 is an ErdÅ‘s–Woods number. [11] The sum of the integers from 1 to 36 is 666 (see number of the beast). 36 is also a Tridecagonal number. [12]

  6. Table of divisors - Wikipedia

    en.wikipedia.org/wiki/Table_of_divisors

    d() is the number of positive divisors of n, including 1 and n itself; σ() is the sum of the positive divisors of n, including 1 and n itselfs() is the sum of the proper divisors of n, including 1 but not n itself; that is, s(n) = σ(n) − n

  7. Regular number - Wikipedia

    en.wikipedia.org/wiki/Regular_number

    Thus, 1/54, in sexagesimal, is 1/60 + 6/60 2 + 40/60 3, also denoted 1:6:40 as Babylonian notational conventions did not specify the power of the starting digit. Conversely 1/4000 = 54/60 3 , so division by 1:6:40 = 4000 can be accomplished by instead multiplying by 54 and shifting three sexagesimal places.

  8. Triangular number - Wikipedia

    en.wikipedia.org/wiki/Triangular_number

    The final digit of a triangular number is 0, 1, 3, 5, 6, or 8, and thus such numbers never end in 2, 4, 7, or 9. A final 3 must be preceded by a 0 or 5; a final 8 must be preceded by a 2 or 7. In base 10, the digital root of a nonzero triangular number is always 1, 3, 6, or 9. Hence, every triangular number is either divisible by three or has a ...

  9. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    An odd number does not have the prime factor 2. The first: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23 (sequence A005408 in the OEIS). All integers are either even or odd. A square has even multiplicity for all prime factors (it is of the form a 2 for some a). The first: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144 (sequence A000290 in the OEIS).