Search results
Results from the WOW.Com Content Network
Acute respiratory acidosis occurs when an abrupt failure of ventilation occurs. This failure in ventilation may be caused by depression of the central respiratory center by cerebral disease or drugs, inability to ventilate adequately due to neuromuscular disease (e.g., myasthenia gravis, amyotrophic lateral sclerosis, Guillain–Barré syndrome, muscular dystrophy), or airway obstruction ...
The base excess is used for the assessment of the metabolic component of acid-base disorders, and indicates whether the person has metabolic acidosis or metabolic alkalosis. Contrasted with the bicarbonate levels, the base excess is a calculated value intended to completely isolate the non-respiratory portion of the pH change. [16]
The partial pressure of carbon dioxide, along with the pH, can be used to differentiate between metabolic acidosis, metabolic alkalosis, respiratory acidosis, and respiratory alkalosis. Hypoventilation exists when the ratio of carbon dioxide production to alveolar ventilation increases above normal values – greater than 45mmHg.
Over time, the affected blood vessels become stiffer and thicker, in a process known as fibrosis. The mechanisms involved in this narrowing process include vasoconstriction , thrombosis , and vascular remodeling (excessive cellular proliferation, fibrosis, and reduced apoptosis/programmed cell death in the vessel walls, caused by inflammation ...
The use of acidosis for a low pH creates an ambiguity in its meaning. The difference is important where a patient has factors causing both acidosis and alkalosis, wherein the relative severity of both determines whether the result is a high, low, or normal pH. [citation needed] Alkalemia occurs at a pH over 7.45.
Respiratory failure results from inadequate gas exchange by the respiratory system, meaning that the arterial oxygen, carbon dioxide, or both cannot be kept at normal levels. A drop in the oxygen carried in the blood is known as hypoxemia ; a rise in arterial carbon dioxide levels is called hypercapnia .
In this situation the hypercapnia can also be accompanied by respiratory acidosis. [11] Acute hypercapnic respiratory failure may occur in acute illness caused by chronic obstructive pulmonary disease (COPD), chest wall deformity, some forms of neuromuscular disease (such as myasthenia gravis), and obesity hypoventilation syndrome. [12]
Recall that the relationship represented in a Davenport diagram is a relationship between three variables: P CO 2, bicarbonate concentration and pH.Thus, Fig. 7 can be thought of as a topographical map—that is, a two-dimensional representation of a three-dimensional surface—where each isopleth indicates a different partial pressure or “altitude.”