Search results
Results from the WOW.Com Content Network
for the definition of the principal values of the inverse hyperbolic tangent and cotangent. In these formulas, the argument of the logarithm is real if and only if z is real. For artanh, this argument is in the real interval (−∞, 0] , if z belongs either to (−∞, −1] or to [1, ∞) .
The Gudermannian function gives a direct relationship between the circular functions and the hyperbolic functions that does not involve complex numbers. The graph of the function a cosh( x / a ) is the catenary , the curve formed by a uniform flexible chain, hanging freely between two fixed points under uniform gravity.
Trigonometric functions and their reciprocals on the unit circle. All of the right-angled triangles are similar, i.e. the ratios between their corresponding sides are the same. For sin, cos and tan the unit-length radius forms the hypotenuse of the triangle that defines them.
Twice the area of the purple triangle is the stereographic projection s = tan 1 / 2 ϕ = tanh 1 / 2 ψ. The blue point has coordinates (cosh ψ, sinh ψ). The red point has coordinates (cos ϕ, sin ϕ). The purple point has coordinates (0, s). Graph of the Gudermannian function. Graph of the inverse Gudermannian function.
Basis of trigonometry: if two right triangles have equal acute angles, they are similar, so their corresponding side lengths are proportional.. In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) [1] are real functions which relate an angle of a right-angled triangle to ratios of two side lengths.
[1] [10] Another precarious convention used by a small number of authors is to use an uppercase first letter, along with a “ −1 ” superscript: Sin −1 (x), Cos −1 (x), Tan −1 (x), etc. [11] Although it is intended to avoid confusion with the reciprocal, which should be represented by sin −1 (x), cos −1 (x), etc., or, better, by ...
Illustration of the sine and tangent inequalities. The figure at the right shows a sector of a circle with radius 1. The sector is θ/(2 π) of the whole circle, so its area is θ/2. We assume here that θ < π /2. = = = =
The sine and tangent small-angle approximations are used in relation to the double-slit experiment or a diffraction grating to develop simplified equations like the following, where y is the distance of a fringe from the center of maximum light intensity, m is the order of the fringe, D is the distance between the slits and projection screen ...