Search results
Results from the WOW.Com Content Network
In statistics, quality assurance, and survey methodology, sampling is the selection of a subset or a statistical sample (termed sample for short) of individuals from within a statistical population to estimate characteristics of the whole population. The subset is meant to reflect the whole population, and statisticians attempt to collect ...
The data set lists values for each of the variables, such as for example height and weight of an object, for each member of the data set. Data sets can also consist of a collection of documents or files. [2] In the open data discipline, data set is the unit to measure the information released in a public open data repository. The European data ...
For a sample set, the maximum function is non-smooth and thus non-differentiable. For optimization problems that occur in statistics it often needs to be approximated by a smooth function that is close to the maximum of the set. A smooth maximum, for example, g(x 1, x 2, …, x n) = log( exp(x 1) + exp(x 2) + … + exp(x n) )
A descriptive statistic is used to summarize the sample data. A test statistic is used in statistical hypothesis testing. A single statistic can be used for multiple purposes – for example, the sample mean can be used to estimate the population mean, to describe a sample data set, or to test a hypothesis.
The mode of a sample is the element that occurs most often in the collection. For example, the mode of the sample [1, 3, 6, 6, 6, 6, 7, 7, 12, 12, 17] is 6. Given the list of data [1, 1, 2, 4, 4] its mode is not unique. A dataset, in such a case, is said to be bimodal, while a set with more than two modes may be described as multimodal.
Data may be collected, presented and summarised, in one of two methods called descriptive statistics. Two elementary summaries of data, singularly called a statistic, are the mean and dispersion. Whereas inferential statistics interprets data from a population sample to induce statements and predictions about a population. [6] [7] [5]
In statistics, a simple random sample (or SRS) is a subset of individuals (a sample) chosen from a larger set (a population) in which a subset of individuals are chosen randomly, all with the same probability. It is a process of selecting a sample in a random way.
Overabundance of already collected data became an issue only in the "Big Data" era, and the reasons to use undersampling are mainly practical and related to resource costs. Specifically, while one needs a suitably large sample size to draw valid statistical conclusions, the data must be cleaned before it can be used. Cleansing typically ...