Ad
related to: center of the symmetrical group definition science experiment for kids mixtures and solutions
Search results
Results from the WOW.Com Content Network
The kernel of the map G → G i is the i th center [1] of G (second center, third center, etc.), denoted Z i (G). [2] Concretely, the (i+1)-st center comprises the elements that commute with all elements up to an element of the i th center. Following this definition, one can define the 0th center of a group to be the identity subgroup.
In crystallography, a centrosymmetric point group contains an inversion center as one of its symmetry elements. [1] In such a point group, for every point (x, y, z) in the unit cell there is an indistinguishable point (-x, -y, -z). Such point groups are also said to have inversion symmetry. [2] Point reflection is a similar term used in geometry.
In a symmetry group, the group elements are the symmetry operations (not the symmetry elements), and the binary combination consists of applying first one symmetry operation and then the other. An example is the sequence of a C 4 rotation about the z-axis and a reflection in the xy-plane, denoted σ(xy) C 4 .
In the theory of Coxeter groups, the symmetric group is the Coxeter group of type A n and occurs as the Weyl group of the general linear group. In combinatorics , the symmetric groups, their elements ( permutations ), and their representations provide a rich source of problems involving Young tableaux , plactic monoids , and the Bruhat order .
In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the ambient space which takes the object to itself, and which preserves all the relevant structure of the object.
The alternating group, symmetric group, and their double covers are related in this way, and have orthogonal representations and covering spin/pin representations in the corresponding diagram of orthogonal and spin/pin groups. Explicitly, S n acts on the n-dimensional space R n by permuting coordinates (in matrices, as permutation matrices).
In mathematics, the representation theory of the symmetric group is a particular case of the representation theory of finite groups, for which a concrete and detailed theory can be obtained. This has a large area of potential applications, from symmetric function theory to quantum chemistry studies of atoms, molecules and solids.
The elements of this symmetry group should not be confused with the "symmetry element" itself. Loosely, a symmetry element is the geometric set of fixed points of a symmetry operation. For example, for rotation about an axis, the points on the axis do not move and in a reflection the points that remain unchanged make up a plane of symmetry.
Ad
related to: center of the symmetrical group definition science experiment for kids mixtures and solutions