Search results
Results from the WOW.Com Content Network
The gauss is the unit of magnetic flux density B in the system of Gaussian units and is equal to Mx/cm 2 or g/Bi/s 2, while the oersted is the unit of H-field. One tesla (T) corresponds to 10 4 gauss, and one ampere (A) per metre corresponds to 4π × 10 −3 oersted .
Output measurements are assumed to be corrupted by Gaussian noise and the initial state, likewise, is assumed to be a Gaussian random vector. Under these assumptions an optimal control scheme within the class of linear control laws can be derived by a completion-of-squares argument. [ 1 ]
This page lists examples of magnetic induction B in teslas and gauss produced by various sources, grouped by orders of magnitude. The magnetic flux density does not measure how strong a magnetic field is, but only how strong the magnetic flux is in a given point or at a given distance (usually right above the magnet's surface).
This added noise obscures the influence of any single individual's data, thereby protecting their privacy while still allowing for meaningful statistical analysis. Common distributions used for noise generation include the Laplace and Gaussian distributions. These mechanisms are particularly useful for functions that output real-valued numbers.
F is the device noise factor, however this does need to be measured at the operating power level. The common misunderstanding, that P s is the oscillator output level, may result from derivations that are not completely general. In 1982, W. P. Robins (IEE Publication "Phase noise in signal sources") correctly showed that the Leeson equation (in ...
The permeability of vacuum (also known as permeability of free space) is a physical constant, denoted μ 0. The SI units of μ are volt-seconds per ampere-meter, equivalently henry per meter. Typically μ would be a scalar, but for an anisotropic material, μ could be a second rank tensor.
The vacuum magnetic permeability (variously vacuum permeability, permeability of free space, permeability of vacuum, magnetic constant) is the magnetic permeability in a classical vacuum. It is a physical constant, conventionally written as μ 0 (pronounced "mu nought" or "mu zero").
Gaussian functions are the Green's function for the (homogeneous and isotropic) diffusion equation (and to the heat equation, which is the same thing), a partial differential equation that describes the time evolution of a mass-density under diffusion.