enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Real analysis - Wikipedia

    en.wikipedia.org/wiki/Real_analysis

    In mathematics, the branch of real analysis studies the behavior of real numbers, sequences and series of real numbers, and real functions. [1] Some particular properties of real-valued sequences and functions that real analysis studies include convergence , limits , continuity , smoothness , differentiability and integrability .

  3. List of real analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_real_analysis_topics

    Convolution. Cauchy product –is the discrete convolution of two sequences; Farey sequence – the sequence of completely reduced fractions between 0 and 1; Oscillation – is the behaviour of a sequence of real numbers or a real-valued function, which does not converge, but also does not diverge to +∞ or −∞; and is also a quantitative measure for that.

  4. Glossary of real and complex analysis - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_real_and...

    An Introduction to Complex Analysis in Several Variables. Van Nostrand. Rudin, Walter (1976). Principles of Mathematical Analysis. Walter Rudin Student Series in Advanced Mathematics (3rd ed.). McGraw-Hill. ISBN 9780070542358. Rudin, Walter (1986). Real and Complex Analysis (International Series in Pure and Applied Mathematics). McGraw-Hill.

  5. Principles of Mathematical Analysis - Wikipedia

    en.wikipedia.org/wiki/Principles_of_Mathematical...

    Rudin's text was the first modern English text on classical real analysis, and its organization of topics has been frequently imitated. [1] In Chapter 1, he constructs the real and complex numbers and outlines their properties. (In the third edition, the Dedekind cut construction is sent to an appendix for pedagogical reasons.)

  6. Littlewood's three principles of real analysis - Wikipedia

    en.wikipedia.org/wiki/Littlewood's_three...

    Littlewood's three principles are quoted in several real analysis texts, for example Royden, [2] Bressoud, [3] and Stein & Shakarchi. [4] Royden [5] gives the bounded convergence theorem as an application of the third principle. The theorem states that if a uniformly bounded sequence of functions converges pointwise, then their integrals on a ...

  7. Mathematical analysis - Wikipedia

    en.wikipedia.org/wiki/Mathematical_analysis

    p-adic analysis, the study of analysis within the context of p-adic numbers, which differs in some interesting and surprising ways from its real and complex counterparts. Non-standard analysis , which investigates the hyperreal numbers and their functions and gives a rigorous treatment of infinitesimals and infinitely large numbers.

  8. Category:Real analysis - Wikipedia

    en.wikipedia.org/wiki/Category:Real_analysis

    Real analysis is a traditional division of mathematical analysis, along with complex analysis and functional analysis. It is mainly concerned with the 'fine' (micro-level) behaviour of real functions, and related topics. See Category:Fourier analysis for topics in harmonic analysis.

  9. Nonstandard analysis - Wikipedia

    en.wikipedia.org/wiki/Nonstandard_analysis

    The real contributions of nonstandard analysis lie however in the concepts and theorems that utilize the new extended language of nonstandard set theory. Among the list of new applications in mathematics there are new approaches to probability, [ 11 ] hydrodynamics, [ 21 ] measure theory, [ 22 ] nonsmooth and harmonic analysis, [ 23 ] etc.