Search results
Results from the WOW.Com Content Network
It is the most commonly used skin suture due to its excellent adaptability to potentially expanding tissues (edema). [9] Nylon (polyfilaments, Nurolon, Surgilon, Supramid) Description: polyamide; Advantages/disadvantages: Excellent tensile strength, increased usability, and increased knot security as compared to its monofilamentous counterpart.
Surgical suture on needle holders. Catgut suture in a vintage glass dispenser. Catgut suture is a type of surgical suture made of twisted strands of purified collagen taken from the small intestine of domesticated ruminants or beef tendon. It is naturally degraded by the body's own proteolytic enzymes.
Adsorbable biological suture material. Chromic is an adsorbable suture made by twisting together strands of purified collagen taken from bovine intestines. Due to undergoing a ribbon stage chromicisation (treatment with chromic acid salts), the chromic offers roughly twice the stitch-holding time of plain catgut.
A white light source—emitting light of multiple wavelengths—is focused on a sample (the pairs of complementary colors are indicated by the yellow dotted lines). Upon striking the sample, photons that match the energy gap of the molecules present (green light in this example) are absorbed, exciting the molecules. Other photons are scattered ...
The near-infrared (NIR) window (also known as optical window or therapeutic window) defines the range of wavelengths from 650 to 1350 nanometre (nm) where light has its maximum depth of penetration in tissue. [1] Within the NIR window, scattering is the most dominant light-tissue interaction, and therefore the propagating light becomes diffused ...
A Feynman diagram (box diagram) for photon–photon scattering: one photon scatters from the transient vacuum charge fluctuations of the other. Two-photon physics, also called gamma–gamma physics, is a branch of particle physics that describes the interactions between two photons. Normally, beams of light pass through each other unperturbed.
This startling coincidence in value led Maxwell to make the inference that light itself is a type of electromagnetic wave. Maxwell's equations predicted an infinite range of frequencies of electromagnetic waves, all traveling at the speed of light. This was the first indication of the existence of the entire electromagnetic spectrum.
The above treatment for an incident wave accounts for the radiation pressure experienced by a black (totally absorbing) body. If the wave is specularly reflected, then the recoil due to the reflected wave will further contribute to the radiation pressure. In the case of a perfect reflector, this pressure will be identical to the pressure caused ...