Search results
Results from the WOW.Com Content Network
Bambi is a high-level Bayesian model-building interface based on PyMC; PyMC a probabilistic programming language written in Python; Stan is a probabilistic programming language for statistical inference written in C++
PyMC (formerly known as PyMC3) is a probabilistic programming language written in Python. It can be used for Bayesian statistical modeling and probabilistic machine learning. PyMC performs inference based on advanced Markov chain Monte Carlo and/or variational fitting algorithms.
Engine for Likelihood-Free Inference. ELFI is a statistical software package written in Python for Approximate Bayesian Computation (ABC), also known e.g. as likelihood-free inference, simulator-based inference, approximative Bayesian inference etc. [83] ABCpy: Python package for ABC and other likelihood-free inference schemes.
Bayesian inference is an important technique in statistics, and especially in mathematical statistics. Bayesian updating is particularly important in the dynamic analysis of a sequence of data. Bayesian inference has found application in a wide range of activities, including science, engineering, philosophy, medicine, sport, and law.
Stan (software) – Stan is an open-source package for obtaining Bayesian inference using the No-U-Turn sampler (NUTS), [27] a variant of Hamiltonian Monte Carlo. PyMC – A Python library implementing an embedded domain specific language to represent bayesian networks, and a variety of samplers (including NUTS)
Devising a good model for the data is central in Bayesian inference. In most cases, models only approximate the true process, and may not take into account certain factors influencing the data. [2] In Bayesian inference, probabilities can be assigned to model parameters. Parameters can be represented as random variables. Bayesian inference uses ...
Sequential Bayesian filtering is the extension of the Bayesian estimation for the case when the observed value changes in time. It is a method to estimate the real value of an observed variable that evolves in time. There are several variations: filtering when estimating the current value given past and current observations, smoothing
Integrated nested Laplace approximations (INLA) is a method for approximate Bayesian inference based on Laplace's method. [1] It is designed for a class of models called latent Gaussian models (LGMs), for which it can be a fast and accurate alternative for Markov chain Monte Carlo methods to compute posterior marginal distributions.