enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of chaotic maps - Wikipedia

    en.wikipedia.org/wiki/List_of_chaotic_maps

    In mathematics, a chaotic map is a map (an evolution function) that exhibits some sort of chaotic behavior.Maps may be parameterized by a discrete-time or a continuous-time parameter.

  3. Lorenz system - Wikipedia

    en.wikipedia.org/wiki/Lorenz_system

    A sample solution in the Lorenz attractor when ρ = 28, σ = 10, and β = ⁠ 8 / 3 ⁠. The Lorenz system is a system of ordinary differential equations first studied by mathematician and meteorologist Edward Lorenz.

  4. Portal:Systems science/Picture - Wikipedia

    en.wikipedia.org/wiki/Portal:Systems_science/Picture

    Portal:Systems science/Picture/1 The Lorenz attractor is a 3-dimensional structure corresponding to the long-term behavior of a chaotic flow , noted for its butterfly shape. The map shows how the state of a dynamical system (the three variables of a three-dimensional system) evolves over time in a complex, non-repeating pattern.

  5. File:Lorenz system r28 s10 b2-6666.png - Wikipedia

    en.wikipedia.org/wiki/File:Lorenz_system_r28_s10...

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more

  6. File:Lorenz attractor yb.svg - Wikipedia

    en.wikipedia.org/wiki/File:Lorenz_attractor_yb.svg

    750 × 750 (1.78 MB) Wikimol: 17:45, 4 January 2006: 750 × 750 (1.8 MB) Wikimol: An icon of chaos theory - the Lorenz atractor. Now in SVG. Projection of trajectory of Lorenz system in phase space Based on images Image:Lorenz system r28 s10 b2-6666.png by User:Wikimol and Image:Lorenz attractor.svg by [[User:User:Dschw

  7. Phase space - Wikipedia

    en.wikipedia.org/wiki/Phase_space

    An attractor is a stable point which is also called a "sink". The repeller is considered as an unstable point, which is also known as a "source". A phase portrait graph of a dynamical system depicts the system's trajectories (with arrows) and stable steady states (with dots) and unstable steady states (with circles) in a phase space.

  8. File:Lorenz attractor.svg - Wikipedia

    en.wikipedia.org/wiki/File:Lorenz_attractor.svg

    Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts

  9. Logistic map - Wikipedia

    en.wikipedia.org/wiki/Logistic_map

    For r < 1, exists outside [0, 1] as an unstable fixed point, but for r = 1, the two fixed points collide, and for r > 1, appears between [0, 1] as a stable fixed point. When the parameter r = 1, the trajectory of the logistic map converges to 0 as before, but the convergence speed is slower at r = 1.

  1. Related searches lorenz attractor desmos answer chart for grade 1 full circle download free

    lorenz attractor examplelorenz attractor
    lorenz draw exampleslorenz equation model