Search results
Results from the WOW.Com Content Network
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
Power series are useful in mathematical analysis, where they arise as Taylor series of infinitely differentiable functions. In fact, Borel's theorem implies that every power series is the Taylor series of some smooth function. In many situations, the center c is equal to zero, for instance for Maclaurin series.
The most general power rule is the functional power rule: for any functions and , ′ = () ′ = (′ + ′ ), wherever both sides are well defined. Special cases: If f ( x ) = x a {\textstyle f(x)=x^{a}} , then f ′ ( x ) = a x a − 1 {\textstyle f'(x)=ax^{a-1}} when a {\textstyle a} is any nonzero real number and x {\textstyle x} is ...
Since differentiation is a linear operation on the space of differentiable functions, polynomials can also be differentiated using this rule. The power rule underlies the Taylor series as it relates a power series with a function's derivatives. The rule was derived from Isaac Newtons Ideas, but there is a conspiracy theory that he stole it from ...
In general, any infinite series is the limit of its partial sums. For example, an analytic function is the limit of its Taylor series, within its radius of convergence. = =. This is known as the harmonic series. [6]
In mathematics, the power series method is used to seek a power series solution to certain differential equations. In general, such a solution assumes a power series with unknown coefficients, then substitutes that solution into the differential equation to find a recurrence relation for the coefficients.
Whereas the harmonic number difference computes the integral in a global sliding window, the double series, in parallel, computes the sum in a local sliding window—a shifting -tuple—over the harmonic series, advancing the window by positions to select the next -tuple, and offsetting each element of each tuple by relative to the window's ...
Another method of deriving vector and tensor derivative identities is to replace all occurrences of a vector in an algebraic identity by the del operator, provided that no variable occurs both inside and outside the scope of an operator or both inside the scope of one operator in a term and outside the scope of another operator in the same term ...