enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    Modular exponentiation is efficient to compute, even for very large integers. On the other hand, computing the modular discrete logarithm – that is, finding the exponent e when given b, c, and m – is believed to be difficult. This one-way function behavior makes modular exponentiation a candidate for use in cryptographic algorithms.

  3. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    The modular inverse of aR mod N is REDC((aR mod N) −1 (R 3 mod N)). Modular exponentiation can be done using exponentiation by squaring by initializing the initial product to the Montgomery representation of 1, that is, to R mod N, and by replacing the multiply and square steps by Montgomery multiplies.

  4. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    The first step is relatively slow but only needs to be done once. Modular multiplicative inverses are used to obtain a solution of a system of linear congruences that is guaranteed by the Chinese Remainder Theorem. For example, the system X ≡ 4 (mod 5) X ≡ 4 (mod 7) X ≡ 6 (mod 11) has common solutions since 5,7 and 11 are pairwise coprime ...

  5. Discrete logarithm - Wikipedia

    en.wikipedia.org/wiki/Discrete_logarithm

    Regardless of the specific algorithm used, this operation is called modular exponentiation. For example, consider Z 17 ×. To compute 3 4 in this group, compute 3 4 = 81, and then divide 81 by 17, obtaining a remainder of 13. Thus 3 4 = 13 in the group Z 17 ×. The discrete logarithm is just the inverse operation.

  6. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    In modular arithmetic, a number g is a primitive root modulo n if every number a coprime to n is congruent to a power of g modulo n. That is, g is a primitive root modulo n if for every integer a coprime to n, there is some integer k for which g k ≡ a (mod n). Such a value k is called the index or discrete logarithm of a to the base g modulo n.

  7. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    The exponent of the group, that is, the least common multiple of the orders in the cyclic groups, is given by the Carmichael function (sequence A002322 in the OEIS). In other words, λ ( n ) {\displaystyle \lambda (n)} is the smallest number such that for each a coprime to n , a λ ( n ) ≡ 1 ( mod n ) {\displaystyle a^{\lambda (n)}\equiv 1 ...

  8. Tonelli–Shanks algorithm - Wikipedia

    en.wikipedia.org/wiki/Tonelli–Shanks_algorithm

    modular multiplications, where is the number of digits in the binary representation of and is the number of ones in the binary representation of . If the required quadratic nonresidue z {\displaystyle z} is to be found by checking if a randomly taken number y {\displaystyle y} is a quadratic nonresidue, it requires (on average) 2 {\displaystyle ...

  9. Shor's algorithm - Wikipedia

    en.wikipedia.org/wiki/Shor's_algorithm

    This can be accomplished via modular exponentiation, which is the slowest part of the algorithm. The gate thus defined satisfies U r = I {\displaystyle U^{r}=I} , which immediately implies that its eigenvalues are the r {\displaystyle r} -th roots of unity ω r k = e 2 π i k / r {\displaystyle \omega _{r}^{k}=e^{2\pi ik/r}} .