Search results
Results from the WOW.Com Content Network
Compared with destructive techniques, e.g. three-dimensional electron backscatter diffraction (3D EBSD), [5] with which the sample is serially sectioned and imaged, 3DXRD and similar X-ray nondestructive techniques have the following advantages: They require less sample preparation, thus limiting the introduction of new structures in the sample.
What links here; Upload file; Special pages; Printable version; Page information
X-ray diffraction computed tomography, often abbreviated as XRD-CT, typically refers to the technique invented by Harding et al. [1] which assumes that the acquired data are powder diffraction data. For this reason, it has also been mentioned as powder diffraction computed tomography [ 7 ] and diffraction scattering computed tomography (DSCT ...
Coot can also display electron density, which is the result of structure determination experiments such as X-ray crystallography and EM reconstruction. The density is contoured using a 3D-mesh. The contour level controlled using the mouse wheel for easy manipulation - this provides a simple way for the user to get an idea of the 3D electron ...
Advances in X-ray Analysis—Technical articles on x-ray methods and analyses; Powder Diffraction Journal—quarterly journal published by the JCPDS-International Centre for Diffraction Data through the Cambridge University Press; Denver X-ray Conference—World's largest X-ray conference on the latest advancements in XRD and XRF; PPXRD-16 ...
X-ray diffraction is a generic term for phenomena associated with changes in the direction of X-ray beams due to interactions with the electrons around atoms. It occurs due to elastic scattering , when there is no change in the energy of the waves.
X-ray powder diffraction fingerprinting has become the standard tool for the identification of single or multiple crystal phases and is widely used in such fields as metallurgy, mineralogy, forensic science, archeology, condensed matter physics, and the biological and pharmaceutical sciences.
An X-ray diffraction pattern of a crystallized enzyme. The pattern of spots (reflections) and the relative strength of each spot (intensities) can be used to determine the structure of the enzyme. The relative intensities of the reflections provides information to determine the arrangement of molecules within the crystal in atomic detail.