Search results
Results from the WOW.Com Content Network
DNA denaturation occurs when hydrogen bonds between base pairs are disturbed. The non-covalent interactions between antiparallel strands in DNA can be broken in order to "open" the double helix when biologically important mechanisms such as DNA replication, transcription, DNA repair or protein binding are set to occur. [19]
DNA polymerase, the main enzyme to catalyze the polymerization of free deoxyribonucleotides into a newly forming DNA strand, plays a significant role in the occurrence of this mutation. When DNA polymerase encounters a direct repeat, it can undergo a replication slippage. [4] Strand slippage may also occur during the DNA synthesis step of DNA ...
DNA gel electrophoresis is usually performed for analytical purposes, often after amplification of DNA via polymerase chain reaction (PCR), but may be used as a preparative technique for other methods such as mass spectrometry, RFLP, PCR, cloning, DNA sequencing, or southern blotting for further characterization.
A DNA polymerase may perform this replacement via nick translation, a terminal excision reaction by its 5' 3' exonuclease activity, followed by a fill-in reaction by its polymerase activity. DNA ligase then forms a phosphodiester bond to seal the resulting nicked duplex product, which now includes a new, correct cytosine ( Base excision repair ).
DNA polymerase epsilon is a member of the DNA polymerase family of enzymes found in eukaryotes. It is composed of the following four subunits: POLE (central catalytic unit), POLE2 (subunit 2), POLE3 (subunit 3), and POLE4 (subunit 4).
The AP endonucleases also participate in 3' end processing. Besides opening AP sites, they possess 3' phosphodiesterase activity and can remove a variety of 3' lesions including phosphates, phosphoglycolates, and aldehydes. 3'-Processing must occur before DNA synthesis can initiate because DNA polymerases require a 3' hydroxyl to extend from.
Three more DNA polymerases have been found in E. coli, including DNA polymerase III (discovered in the 1970s) and DNA polymerases IV and V (discovered in 1999). [9] From 1983 on, DNA polymerases have been used in the polymerase chain reaction (PCR), and from 1988 thermostable DNA polymerases were used instead, as they do not need to be added in ...
The actual job of the phosphodiester bonds is where in DNA polymers connect the 5' carbon atom of one nucleotide to the 3' carbon atom of another nucleotide, while the hydrogen bonds stabilize DNA double helices across the helix axis but not in the direction of the axis. [19] This makes it possible to separate the strands from one another.